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Abstract

The meshless method is particularly appropriate to solve crack prop-
agation problems. In this paper, the fatigue growth of cracks in two-
dimensional bodies is considered. The analysis is based upon Paris’ equa-
tion. New enriched weight functions are introduced in the meshless method
formulation to capture the singularity at the crack tip. Simple problems
show the accuracy and efficiency of this method. Then, it is applied to
fatigue analysis of single- and multi-cracked bodies under mixed-mode
conditions.

Key-words: meshless method, fracture mechanics, crack propagation, en-
riched weight functions

1 Introduction

The analysis of fatigue crack growth is essential to ensure the reliability of
structures under cyclic loading conditions. Cracks, as a result of manufacturing
defects or localized damage, may extend until brittle fracture occurs. In linear
elastic fracture mechanics, cracks initiation is not considered. The propagation
is modeled by successive crack extensions, which are determined by the stress
intensity factors (SIFs) obtained after a stress analysis. The classic finite el-
ement method (FEM) is not appropriate to perform these successive analyses
because the computational cost to remesh the body after each crack extension
is prohibitive. To overcome this difficulty, there are mainly three different ways.
Firstly, the extended finite element method [1] introduces local enrichment func-
tions in the FEM approximation in order to represent the discontinuity of the
displacement across the crack lines; enrichments are added as the cracks prop-
agate through the elements. Secondly, the boundary element method [2, 3] per-
mits to simulate the propagation simply by adding new boundary elements along
cracks extensions. Thirdly, the meshless method [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
lets the cracks propagate among a set of nodes. The latter method is used in
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this paper and is improved by taking into account the near-tip displacement
field to accurately compute the life of structures.

An outline of the paper is as follows. In Section 2, we briefly present the basis
of the meshless method and some issues related to its use in fracture mechanics.
Then in Section 3, we concentrate upon the way to accurately represent the
near-tip displacement field with this method. We recall that a nodal refinement
near the tip is the way to capture the singularity used in most papers, and that
an enriched basis functions set or an enriched trial functions set can also be
used. Finally, we describe our new method: it consists in adding three nodes
with special weight functions at each crack tip. In Section 4, we explain the steps
of a fatigue crack growth analysis: the computation of stress intensity factors,
the prediction of the propagation direction and of the increment length at each
crack tip if the cracks are stable, the instability criterion, and the determination
of the number of cycles until unstable crack growth. We give several numerical
in Section 5 and draw the conclusions in Section 6.

2 Meshless method

We use the numerical method to solve partial differential equations (PDEs)
without the need to build a mesh that was introduced in Reference [15] under
the name diffuse finite element method and in Reference [16] under the name
element-free Galerkin method. In this paper, we choose to use the name mesh-
less method commonly used nowadays. The fundamental principle consists in
approximating the unknown field of the PDEs by a moving least-squares ap-
proximation (MLSA). This approximation is briefly recalled hereafter. We refer
to both previously cited papers for the details.

Consider a set of N nodes scattered in a domain Ω and let xi be the coor-
dinates of node i. The MLSA uh (x) of a (multi-dimensional) field u (x) in Ω
is:

uh (x) =
N∑

i=1

φi (x)ui (1)

where ui is the value of the field u at xi and φi is the shape function of node i,
given by

φi (x) = cT (x)p (xi) wi (x) (2)

where p(x) is a set of basis functions, wi (x) is a weight function associated with
node i and

c (x) = A−1 (x)p (x) (3)

with

A (x) =
N∑

i=1

wi (x)p (xi)pT (xi) (4)

In practice, the weight functions are positive so that the A matrix is definite
positive and that the approximation is well-behaved. Moreover, a small domain
Ωi containing xi is associated with node i such that wi (x), and as a result φi (x),
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equal zero outside Ωi. This choice is made in order to give the approximation a
local character and to restrict the sums in Equations (1) and (4) to a few terms.
Finally, the common choice in the literature is that wi (x) decreases with the
distance between xi and x, in such a way that the nearer a node is to a point,
the greater it influences this point; but, this choice is revised in Section 3.

The meshless method for the resolution PDEs of consists in using the shape
functions (2) as the test functions and the trial functions in the variational
principle of these PDEs. In this paper, the PDEs under consideration are the
equilibrium equations of two-dimensional, homogeneous, isotropic and linear-
elastic solids undergoing small displacements. We refer to the overview paper [9]
for the issues related to the enforcement of the essential boundary conditions
and to the numerical integration, and for the resulting stiffness matrix and load
vector.

2.1 Choice of the basis and of the weights

In the following, we always use a linear basis: pT = [1, x, y], which proved
to be a good trade-off between speed and efficiency. But, the enriched method
described later also works with another basis. We decide to use the same weight
for each regular node (in contrast with the enriched nodes described later): a
quartic weight function on a circular support

wi (x) = S4 (s) (5)

where we use the quartic spline

S4 (s) =
{

1− 6s2 + 8s3 − 3s4 if s ≤ 1
0 if s > 1 (6)

and the normalized distance is

s =
‖x− xi‖

Ri
(7)

with Ri the radius of the influence domain of node i. These radii must be large
enough so that each point of the domain is covered by at least 3 supports (3
being the size of the basis). According to our experience, Ri = 1.7 × h, where
h is the characteristic nodal spacing distance, is a good choice.

It is useful for the explanation of the enriched method to plot a weight
function and a shape function. So, consider 5 × 5 nodes regularly distributed
in a domain [−2, 2] × [−2, 2] (h = 1). The weight function and the shape
function of the central node located at (0, 0) are plotted in Figure 1. We see
that these functions exhibit the same shape although their amplitude is different.
More plots showing the resemblance between the weight functions and the shape
functions can be found in Reference [17].
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Figure 1: The resemblance between a weight function and a shape function
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Figure 2: Additional nodes at both sides of the crack

2.2 Modified weights in presence of cracks

The distance s in Equation (5) must be modified if the line segment joining xi

and x crosses a crack line in order to represent the displacement discontinuity
across this line. As in Reference [18], s becomes the total length of the shortest
path from xi to x that lies entirely within the domain (divided by the radius of
the support):

s =
‖x− xc‖+ ‖xc − xi‖

Ri
(8)

where xc are the coordinates of the crack tip near xi.

2.3 Additional nodes in presence of cracks

If a node is located on a crack, it is split in two; one node is moved of a small
distance at one side of the crack and the other is moved of the same amount
at the other side. Moreover, it is good to add some nodes at each side of the
crack as illustrated in Figure 2. In this way, the shaded areas where the MLS
approximation is an extrapolation disappear. In our experience, this always
improves the quality of the solution.
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3 Near-tip field enrichment

As explained in the introduction, the meshless method is particularly suitable to
simulate crack propagation. But, special care must be taken in order to precisely
model the high gradient of the displacement near the crack tip. Otherwise, the
SIFs are underestimated and the life of the structures overestimated. Let us
recall that, in the absence of mode III, the near-tip displacement field is given
by:

u (x) = KIQI (x) + KIIQII (x) (9)

QI (x) =
1
2µ

√
r

2π

(
cos
(

θ
2

) [
κ− 1 + 2 sin2

(
θ
2

)]
sin
(

θ
2

) [
κ + 1− 2 cos2

(
θ
2

)] ) (10)

QII (x) =
1
2µ

√
r

2π

(
sin
(

θ
2

) [
κ + 1 + 2 cos2

(
θ
2

)]
cos
(

θ
2

) [
−κ + 1 + 2 sin2

(
θ
2

)] ) (11)

where KI and KII are mode I and mode II SIFs respectively, r is the distance
to the tip, θ is the angle measured from a line ahead of the crack (θ ∈ [−π, π]), µ
is the shear modulus and κ is the Kolosov constant. We first review the existing
methods to address this difficulty and then explain our method

3.1 Review of existing methods

To address the problem of this high gradient, in References [4, 5, 6], the spatial
discretization is refined near the tip. These nodal arrangements are moved with
the crack tip at each step of the quasi-static propagation. For dynamic crack
propagation, an Arbitrary Lagrangian-Eulerian formulation is used in Refer-
ence [12] to continuously relocate the nodes. In References [7, 8, 13], the spatial
discretization is fine in the whole domain; this leads of course to high compu-
tation costs. Another approach to this problem of the singularity is to use an
enriched basis: either a fully enriched basis

pT =
[
1, x, y,

√
r cos

(
θ

2

)
,
√

r sin
(

θ

2

)
,
√

r sin
(

θ

2

)
sin (θ) ,

√
r cos

(
θ

2

)
sin (θ)

]
as in References [11, 14] or a partially enriched basis pT = [1, x, y,

√
r] as in

Reference [14]. These methods work well, particularly the fully enriched basis,
but this fully enriched method is quite computationally expensive because a
7× 7 matrix must be inverted at each Gauss point, see Equations (3) and (4),
instead of a 3× 3 matrix as it is the case with the linear basis. To reduce this
cost, it is possible to use the enriched method in a region surrounding the crack
tip and the classic method away from the crack tip with a transition region
in between. Finally, the enrichment of the trial functions is also proposed in
Reference [11]:

uh (x) =
N∑

i=1

φi (x)ui +
nc∑

j=1

[
Qj

I (x) kj
I + Qj

II (x) kj
II

]
(12)
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where nc is the number of crack tips and kj
I and kj

II are additional degrees of
freedom associated with mode I and mode II respectively at tip j. It is quite
heavy to introduce this trial function into the variational principle, but the
method works well. This comes at the cost of an increase in the band-width
of the stiffness matrix because the additional degrees of freedom interact with
every other degrees of freedom. Again, it is possible to restrict the enrichments
in regions surrounding the crack tips to reduce this cost.

3.2 Enrichment with special weight functions

Our enriched method consists in adding some nodes with special weight func-
tions at each tip. Using the Equations (2) to (4) of the MLSA, each node and its
associated weight function give a shape function that enrich the set of regular
shape functions. Our aim is that these shape functions behave in a way similar
to the near tip displacement field given in Equations (9) to (11). To that end,
we choose the weight functions to behave in a way similar to Equations (10)
and (11) and we expect that the resulting shape functions resemble them — as
it is the case for the regular nodes in Figure (1).

More precisely, the following criteria guide us in the choice of the special
weight functions:

1. The weight functions should vary as
√

r for small r: this is the main
criterion in order to obtain by derivation a stress field that varies as 1√

r

for small r.

2. They should be positive: this is requested for the positive definiteness of
the A matrix, given by Equation (4).

3. They should have an angular variation of the same kind as those in Equa-
tions (10) and (11): this suggests using cos

(
θ
2

)
and sin

(
θ
2

)
.

4. They should be zero outside a circular support like the regular weights:
this provides the enrichment with a local character.

According to some experiments, the use in conjunction of the three following
weights appears to be a good choice:

wc (x) = α
√

r cos
(

θ

2

)
S4 (s) (13)

wp (x) = α
√

r

[
1 + sin

(
θ

2

)]
S4 (s) (14)

wm (x) = α
√

r

[
1− sin

(
θ

2

)]
S4 (s) (15)

In these equations,

• The indices c, p and m respectively stand for “cos”, “plus sin” and “mi-
nus sin”.
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• S4 is the quartic spline function of Equation (6) and the normalized dis-
tance s is again given by Equation (7), with the coordinates of the three
nodes being identical: xc = xp = xm = xtip.

• We also choose an identical radius of the influence domain, which normal-
izes the distance in Equation (7): Rc = Rp = Rm. We choose that this
radius is equal to the minimum of the radius of the neighboring regular
nodes and the distance between the tip and the first crack tip. So, the
domain of influence does not contain any kink.

• The α factor controls the amplitude of the enriched weight compared with
the amplitude of the regular nodes; α = 1 is a reasonable choice.

We observe that the three functions meet the previous criteria:

1. At r = 0, s = 0 and the derivative of the spline function equals zero:
S′4(s) = 0. So, for θ fixed, the partial derivatives of the special weight
functions ∂wc,p,m

∂r are proportional to 1√
r

at the tip. These derivatives ap-
pear in the derivatives of the shape function by derivation of Equation (2),
which in turn provide the desired singularity to the stress field.

2. They are positive since the quartic spline is positive and so are cos
(

θ
2

)
,

1 + sin
(

θ
2

)
and 1− sin

(
θ
2

)
(θ ∈ [−π, π]).

3. The three special weight functions are dominant in three different areas
around the tip. wc is dominant in front of the crack, wp is dominant on
the side of the crack where θ = π and wm is dominant on the other side
where θ = −π. Moreover, wp and wm are discontinuous along the crack.

4. The presence of the spline provides the local character of the special func-
tions.

In Figure 3, we illustrate the shape functions φc, φp and φm that result from
the chosen special weight functions. We use the same set of 5 × 5 nodes as in
Figure 1 and a crack whose tip is located at (0, 0). The three enriched nodes
are added at the tip. The radius of their support is the same as those of the
regular nodes. We plot the enriched shape functions φc, φp and φm and also
show the plane with the nodes and the crack under the same perspective. We
observe that they have the desired properties:

1. They vary as
√

r near the tip and like a spline further.

2. They are dominant in different areas around the tip.

3. φp and φm exhibit a discontinuity along the crack that strengthens the
displacement discontinuity provided by the modification of the weights
explained in Section 2.2. This will permit to represent more accurately
the opening of the crack.
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Figure 3: Enriched shape functions

We emphasize on the fact that the enriched functions are introduced easily and
inexpensively in a meshless method formulation. Indeed, there is no need to
manage an enriched area, a normal area and a transition area like with the
other enriched methods described at the beginning of this section.

4 Fatigue crack growth analysis

The stress intensity factors are calculated by conservation integrals converted
into a domain form [19]. In mixed-mode problems, auxiliary solutions (10)
and (11) are used in two interaction conservation integrals to directly obtain
both factors, see Reference [20]. The integration domain is a square centered
on the tip and the half-side of this square is equal to the length of a crack
increment. The domain thus does not contain any kink. For constant amplitude
cyclic loadings, the range of the SIF is defined as

∆K = Kmax −Kmin (16)

where Kmax and Kmin are the SIFs corresponding to the maximum (σmax) and
minimum (σmin) applied loads respectively.

In general, the crack path is a curved path. In our analysis, crack propa-
gation is simulated by successive linear increments. We have to determine the
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direction and the length of these increments. Several criteria exist for the de-
termination of the direction of crack growth under mixed-mode loading. The
most important are: maximum principal stress criterion, maximum energy re-
lease rate criterion and minimum strain energy density criterion. These criteria
predict kink angles of almost the same size, especially in the case of small or
medium mixed-mode ratio KII

KI
. In the present work, the maximum principal

stress criterion is used, which postulates that the crack growth occurs in a di-
rection perpendicular to the maximum principal stress. Thus, at each crack tip,
the local direction of crack growth θc is determined by the condition that the
local shear stress is zero, that is (see for example Reference [21] for details):

KI sin θc + KII (3 cos θc − 1) = 0 (17)

Solving this equation gives

θc = 2 arctan

(
KI −

√
K2

I + 8K2
II

4KII

)
(18)

According to this criterion, the equivalent mode I SIF is

KIeq = KI cos3
θc

2
− 3KII cos2

θc

2
sin

θc

2
(19)

This equivalent stress intensity factor is useful in the unstable fracture cri-
terion below and in the following propagation law. To model the stable crack
propagation, we use the generalized Paris’ law:

da

dN
= C (∆KIeq)

m (20)

where C and m are material properties, a is the crack length, N is the number
of loading cycles and ∆KIeq is obtained by Equation (19) with ∆KI and ∆KII

instead of KI and KII . The number of loading cycles required to extend the
crack from the initial length to a given length is evaluated by integrating this
law with a trapezoidal rule.

A compromise must be made regarding the value of the linear increment
length ∆a. If it is too small, the influence domain of the enriched nodes and
the integration domain of the conservation integral are small and this leads to
inaccurate results. If it is too long, the piecewise linear path can not precisely
represent the real curved path. For single-cracked bodies, ∆a is kept constant.
For multi-cracked bodies, we choose a constant value for the maximum incre-
ment length ∆amax, and after each step we select the principal crack tip as the
tip where ∆KIeq is maximum and then at every crack tip the increment is given
by

∆a = ∆amax

(
∆KIeq

∆KIeq,max

)m

(21)

where ∆KIeq,max is the range of the equivalent mode I SIF at the principal
crack tip and m is the exponent in Paris’ law. Accordingly, the increment at
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Half-length of the crack a 0.1 0.2 0.3 0.4 0.5 0.6 0.7
FI — Reference [22] 1.014 1.055 1.123 1.216 1.334 1.481 1.68

FI — without enrichment 0.967 1.010 1.075 1.162 1.272 1.408 1.586
Error — without enrichment 4.6% 4.3% 4.3% 4.4% 4.6% 4.9% 5.6%

FI — with enrichment 1.004 1.057 1.125 1.217 1.333 1.477 1.668
Error — with enrichment 0.99% 0.15% 0.14% 0.05% 0.09% 0.26% 0.74%

Table 1: Mode I normalized stress intensity factors for the centered crack prob-
lem

the principal crack tip is equal to ∆amax and is smaller than this value at other
crack tips. We note that the principal tip can change during the propagation.

Instability of the cracked body occurs when KIeq,max,max > KIc where
KIc is a material property called the fracture toughness. KIeq,max,max is the
equivalent mode I SIF corresponding to σmax at the principal crack tip. This
condition is the stopping criterion in our method: crack increments are added
until this condition is met.

5 Numerical results

5.1 Single centered crack

The first example is a single crack, centered in a square plate under uniform
tension. The square side is 2 units and the crack length 2a varies from 0.2 to
1.4 units. A set of 21× 21 uniformly spaced nodes is used. A number of nodes,
which grows with the crack, are located on the crack so they are splitted in two.
We solve the problem with the three enriched nodes at both tips on one hand
and without them on the other hand in order to compare the results. The radius
of the support of each (regular or enriched) node is 0.17 units. The integration
is performed by dividing the square in 20× 20 cells, with 8× 8 Gauss points in
each cell. The fatigue crack growth theory is not applied for this problem; the
crack grows by step of 0.1 units at each tip. This is justified because the SIFs
are the same at both tips.

In Table 1, we compare the values of FI = KI

σ
√

πa
for this range of a without

and with the 3 enrichments, with the solution in Reference [22]. This table
shows the significant improvement of the results when the enriched method is
used. For a = 0.1, the computed SIF is not as good as for a ≥ 0.2; this is
probably due to the overlapping of the supports of the 2 enrichments. The
computational overhead of the enriched method is weak — only 4% of the CPU
cost of the classic method.
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Length of the crack a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
FI — Reference [22] 1.23 1.49 1.85 2.32 3.01 4.15 6.40 12.0

FI — without enrichment 1.151 1.404 1.745 2.190 2.823 3.856 5.843 10.55
Error — without enrichment 6.4% 5.8% 5.7% 5.6% 6.2% 7.1% 8.7% 12.1%

FI — with enrichment 1.217 1.477 1.836 2.306 2.978 4.086 6.239 11.45
Error — with enrichment 1.0% 0.86% 0.78% 0.62% 1.1% 1.6% 2.5% 4.6%

Table 2: Mode I normalized stress intensity factors for the edge crack problem

5.2 Single edge crack

In Table 2, we present the results for a single edge crack in a square plate under
uniform tension. We use the same geometry and the same set of nodes as in the
previous section. We see that the enriched method gives once again far better
results than the classic method.

5.3 Single centered angled crack

To validate the new method for mixed-mode problems, we consider a static
angled crack (18 units long) in a rectangular plate (90 × 180) under uniform
tension (σ = 160). A set of 19× 37 uniformly spaced nodes is used and 4 nodes
are added on each side of the crack (Figure 4) to avoid the problem described
in Section 2.3 with the “shaded” area of Figure 2. The radius of the support
of each (regular or enriched) node is 8.5 units. The integration is performed on
18 × 36 cells, with 8 × 8 Gauss points in each cell. Some cells are cut by the
crack but the number of integration points in each cell appears to be sufficient
and there is no need to divide these cells or to add Gauss points in them.

We plot in Figure 5 mode I and mode II stress intensity factors for some
values of the crack angle obtained with or without the enrichment. The en-
richment improves the results for every value of the angle and shows very good
agreement with Reference [22].

5.4 Single edge angled crack

The fatigue growth of an edge angled crack that we study in this section is a more
challenging problem than those studied before. We use the same dimensions, the
same material properties and the same loading as in Reference [3] to perform a
comparison. A rectangular plate (100mm×200mm) with a crack (a0 = 20mm)
that makes an angle 40◦ with a line perpendicular to the edge is submitted to
a cyclic tension (σmax = 40 N/mm, σmin = 0) at both ends. The material
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Figure 6: Stress intensity factors for the edge angled crack problem

properties are as follows:

E = 74000 N/mm2 elastic modulus
ν = 0.3 Poisson ratio
KIc = 1897.36 N/mm

3
2 fracture toughness

m = 3.32 Paris exponent
C = 2.087136× 10−13 Paris constant

(22)

We use a regular set of 21 × 41 nodes plus 5 nodes on each side of the initial
crack. There is a node at the intersection between the crack and the edge that is
splitted in two. The 3 enriched nodes at the crack tip are used. When the crack
grows, these enriched nodes move with the crack tip and we add 1 regular node
on each side of the crack increment. The radius of the support of the enriched
nodes is equal to 8.5 mm. The crack increment length ∆a and the radius of the
support of the enriched nodes are equal to 5 mm. The integration is performed
on 20× 40 cells, with again 8× 8 Gauss points in each cell.

The variation of the SIFs with the crack length and the fatigue-life diagram
are presented in Figures 6 and 7 respectively. On these figures, the asterisk
represents the failure. The total crack length is 61.3 mm when unstable crack
growth occurs and the life of the structure is evaluated as 131411 cycles. This
is in good agreement with results in Reference [3]: 61.2 mm for the final length
and 144885 cycles. The crack path is plotted in Figure 8. We observe a sudden
change of the direction of the crack at the beginning of the propagation. This
change is such that mode II SIF vanishes. After that initial kink, the crack
grows in a straight line.

5.5 Two internal non-colinear cracks

A rectangular plate (90mm×180mm) with 2 internal, parallel, non-colinear and
non-angled cracks (length = 10 mm for both) is submitted to a cyclic tension
(σmax = 160 N/mm, σmin = 0) at both ends. The horizontal distance between
the two tips close to each other is 15mm and the vertical distance is 5mm. The
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material properties are the same as in the previous section. We use a regular set
of 19×37 nodes plus 2 nodes on each side of both initial cracks (radius=8.5 mm)
and the 3 enriched nodes at each crack tip. When the crack grows, the enriched
nodes move and regular nodes are added as in Section 5.4. The maximum crack
increment length ∆amax is equal to 2 mm. The radius of the support of the
enriched nodes at each tip is equal to the increment of the crack of the previous
step at this tip. The integration is performed on 18× 36 cells, with again 8× 8
Gauss points in each cell.

The evolution of the SIFs at the most interior crack tip (A) and at the
crack tip near the edge (B) with the crack length is plotted in Figure 9. The
fatigue-life diagram and the crack paths are presented in Figures 10 and 11
respectively. In the beginning, it is a pure mode I state and the SIFs at A and
B are about the same. Then, mode I factor at A increases quicker than at B
and mode II factor at A becomes negative so that the crack paths curve towards
the other crack. But, when the crack tips A overlap, the stress intensity factors
tend to decrease, while mode I factor increases continuously at B. Finally, the
equivalent mode I SIF at B exceeds the fracture toughness and unstable fracture
occurs at the crack tips B. This prediction of the fatigue crack growth path
is in good agreement with the experimental results reported in Reference [23].
The life of the structure is evaluated as 6792 cycles, which is in good agreement
with Reference [3].

6 Conclusions

Enriched weight functions were introduced in a meshless method formulation to
capture the singularity of the stress field at crack tips. They permitted to ac-
curately evaluate the stress intensity factors with few degrees of freedom. The
method was applied to the simulation of fatigue fracture of single- or multi-
cracked bodies under constant amplitude cyclic loading with the help of Paris’
law. The real curved path of crack growth was simulated by piece-wise linear
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increments. The direction of crack growth was predicted by the maximum prin-
cipal stress criterion. Numerical results showed good agreement with boundary
element method results.

Finally, we find it of interest to quantify the efficiency of the meshless
method. To the best of our knowledge, it is the first time this is done. The com-
plete resolution of the problem in Section 5.5, which was solved in 8 steps (each
step comprising from 719 to 783 nodes, over 40, 000 Gauss points and a linear
system solving), only took 23 seconds on a 2.8 GHz personal computer with our
optimized code. This proves that the meshless method is really suitable to solve
crack propagation problems.
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