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Abstract

We develop a two step estimation procedure to estimate nonlinear panel data models.
Our approach combines the “correlated random effect” and the “control function” ap-
proach to handel endogeneity of regressors that are correlated with both the unobserved
heterogeneity as well as the idiosyncratic component. The novelty here lies in integrating
out the unobserved heterogeneity on which the structural equations are conditioned. The
integration is performed with respect to the posterior distribution of the individual effects
obtained from the first stage reduced form estimation. Our framework suggests separate
tests for correlation between unobserved heterogeneity and the covariates, and correlation
between idiosyncratic component and the covariates. Average partial effects (APEs) of
covariates are also easily obtained.

JEL Classification: C13, C18, C33

Key Words: Correlated Random Effects (CRE), Endogeneity, Average Partial Effects (APE),

Expected a Posteriori (EAP), Multidimensional Numerical Integration.

1 Introduction

Panel data, consisting of observations a cross time for different individual, allow the possibility

of controlling for unobserved time invariant individual heterogeneity. Such heterogeneity can

be an important phenomenon, and failure to control for it can result in misleading inferences.

This problem is particularly severe when the unobserved heterogeneity is correlated with

explanatory variables. Models and methods of controlling for unobserved heterogeneity in

linear models are well established; see Chamberlain (1984) and Arellano and Honore (2001)

for references and discussion. Controlling for unobserved heterogeneity is much more difficult
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in nonlinear models. Chamberlain (2010) and Arellano and Bonhomme (2011) point out that

when panel data outcomes are discrete, serious identification issues arise.

The identification question posed by Chamberlain (2010) is the following: is there a unique

value of structural parameters such that one can estimate the “average partial effect” (APE)

by integrating out the individual effects out of the likelihood for some conditional distribution

of individual effects? In the static binary choice model with two time periods and exogenous

covariates with bounded support, Chamberlain (2010) finds that the structural parameters

are not point-identified, unless the distribution of the idiosyncratic component is the logistic

distribution. Notwithstanding this underidentification result, various methods have evolved

to estimate the structural parameters of interest and APE. Weidner (2011) provides with a

brief overview, and categorizes, of some of the methods developed to estimate the quantities

of interest.

Now, what is desirable in panel data analysis is point identification of the quantities of

interest, such as APE, where the number of time periods, T , remain fixed while the number

of cross sectional units, N , become large. However, at fixed T a non-linear panel data model

may not be point identified, or may not possess a
√
N consistent estimator, as discussed

by Chamberlain (2010) for the binary choice model. One of the leading methods in the

literature is the fixed effect (FE) approach that treat the heterogeneity or individual effects as

parameters to be estimated. But we know that an incidental parameter problem (see Neyman

and Scott (1948) and Lancaster (2000) for a review) usually appears in fixed T estimation of

non-linear panel data models since the number of incidental parameters (individual effects)

grows with the sample size. More recently, it has been argued that the incidental parameter

problem can be viewed as time-series finite-sample bias when T tends to infinity. Following

this perspective, several approaches have been proposed to correct for the time-series bias.

Some of the papers that follow the bias reduction technique for estimating the quantities

of interest are Hahn and Newey (2004), Hahn and Kuersteiner (2011), Woutersen (2002),

Arellano (2003), Carro (2007), Arellano and Hahn (2007) Arellano and Hahn (2006), Bester

and Hansen (2009), and Fernandez-Val (2009).

Wooldridge (2009), however, points out that the fixed effect approach, though promising,

suffer from a number of shortcomings. First, the number of time periods needed for the bias

adjustments to work well is often greater than is available in many applications. Second,
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an important point is that recent bias adjustments include the assumptions of stationarity

and weak dependence; in some cases, the very strong assumption of serial independence

(conditional on the heterogeneity) is maintained. But it has been found that in empirical

work dealing with linear models that there are sources of serial correlation that arise due serial

correlation in the idiosyncratic errors in addition to that caused by unobserved heterogeneity.

The requirement of stationarity is also very strong and has substantive restrictions: it rules out

staples in empirical work such as including separate year effects, which can be estimated very

precisely given a large cross section. Also, there is the technical problem of allowing separate

period effects when large-sample approximations involve a growing number of time periods,

as it effectively introduces an incidental parameters problem in the time series dimension.

There is another class of models that acknowledge the fact that many non-linear panel

data models are not point identified at fixed T and consequently discuss set identification

(bound analysis) for the parameters of interest or for certain policy parameters like marginal

effects. These papers show that show that the bounds become tighter as the number of time

periods, T , increases. The papers that deal with bound analysis include for Chernozhukov,

Hahn, and Newey (2005), Honore and Tamer (2006), Chernozhukov, Fernandez-val, Hahn,

and Newey (2009) and Chernozhukov, Fernandez-val, and Newey (2009). However, with

the exception of Honore and Tamer (2006), as Wooldridge (2009) points out, these methods

are very promising but a still limited to discrete covariates. Moreover, these papers and

papers utilizing FE approach only deal only with regressors, which conditional on unobserved

heterogeneity, are exogenous or predetermined, and do not take endogeneity with respect to

the idiosyncratic errors into account.

In this paper we adopt the “control function” approach to model a “correlated random

effect” (CRE) estimator for non-linear panel data. The approach does entail restriction on

the conditional distribution of the individual effects and the idiosyncratic component, but as

Wooldridge (2009) argues, estimation using CRE and FE involve tradeoffs among assumptions

and the type of quantities that can be estimated, and that no method provides consistent

estimators of either parameters or APEs under a set of assumptions strictly weaker than the

assumptions needed for the other procedures. Some of the recent papers that adopt the CRE

approach to control for heterogeneity are Chernozhukov, Hahn, and Newey (2005), Bester and

Hansen (2007), Papke and Wooldridge (2008) (henceforth PW), and Weidner (2011). While
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Bester and Hansen (2007) and Weidner (2011) study semiparametric models, and do not

specify the conditional distribution of the individual effects, PW assumes a parametric form.

Weidner (2011) employs “generalized random effects” as form of constraint on the structure

of this correlation between unobserved heterogeneity and covariates to draw inference on the

conditional distribution of the individual effects. This form of constraint is employed to reduce

the large dimensional support of the conditioning variables so that the curse of dimension-

ality is allayed when treating the individual effects non-parametrically. Bester and Hansen

(2007) establish restrictions on the space of functions to which the conditional distribution

of unobserved heterogeneity belongs so that both the parameters of interest and conditional

distribution of unobserved heterogeneity are identified.

This paper explores ways to consistently estimate “average partial effects” (APE) in pres-

ence of endogenous regressors that are correlated with both the unobserved heterogeneity and

idiosyncratic component. The paper that is closest to ours is the paper by PW, who also take

endogeneity of regressors with respect to idiosyncratic component into account. While PW

and our paper both consider a two-step procedure to construct control variables to account

for endogeneity, our method and the form of the control functions differs from their’s.

Typically, in a control function approach the structural parameters are estimated condi-

tional on unobserved heterogeneity and unobserved idiosyncratic errors that appear in reduced

form equations of a simultaneous triangular system of equations. In such an approach resid-

uals obtained from the first stage reduced form estimates, that proxy for the idiosyncratic

errors are used as control variables in the structural equations to account for the endogene-

ity of the regressors in the structural equations. However, in panel data models, where we

want to account for unobserved individual effects, the residuals remain unidentified. This is

because the residuals of the reduced form regression, which are defined as the observed value

of the response variable less the expected value of the observed conditional on exogenous re-

gressors and the individual effects, are functions of unobserved individual effects/unobserved

heterogeneity and these individual effects are unobserved. The novelty of our approach lies in

integrating out the unobserved time invariant individual effects on which the structural equa-

tions are conditioned, and which also appear in the residuals of the reduced form equations.

The integration is performed with respect to the posterior distribution of the individual effects

obtained from the first stage reduced form estimation. This leaves us with the expected a
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posteriori (EAP) values of the individual effects, which can then be used to get the residuals.

We would also like to mention that our approach of obtaining control functions that are based

on (EAP) values of the individual effects is non-standard as far as the econometric literature

is concerned. This is because numerical integration with respect to estimated – estimated in

the first stage – parametric distribution of the individual effects has to be performed in order

to obtain the (EAP) values of the individual effects. This creates additional difficulties for

computing the error adjusted covariance matrix of the second stage structural parameters. In

Appendix C we show how to compute the error adjusted covariance matrix for the estimates

of the structural parameters.

Notwithstanding the computational difficulties, our framework suggests, first, a straight-

forward and a precise tests of correlation between unobserved heterogeneity and the deemed

endogenous covariates, as well as correlation with the unobserved shocks. The number of

control variables in the structural equation, as it turns out, is equal to the twice the number

of endogenous regressors, one set to control for the endogeneity with respect to individual

effect and the other to control for endogeneity with respect to idiosyncratic component. This

is in one crucial way that our method differs from PW. Secondly, since the EAP values of the

individual effects are functions of exogenous covariates, the correlatedness of the exogenous

covariates and the individual effects in the structural equations are accounted for, circumvent-

ing the need for a Mundlak (1978) or Chamberlain (1984) type specification of the conditional

distribution of the unobserved heterogeneity in the second stage structural equation. This

has the added advantage of (a) conserving on the degrees of freedom and (b) allowing us to

estimate the structural parameters of interest with more precision, especially when there is

not enough variation among the regressors across time.

While we can do all this, our model still retains the attractive features of the PW, namely,

no assumptions on the serial dependence in the response variable, and the suspected endoge-

nous explanatory variable is allowed to arbitrarily correlate with unobserved shocks in other

time periods.

The rest of the paper is organized as follows. Section 2 introduces the model, Section 2.1

discuss identification for continuous response model, which is a precursor to the discussion

of identification of APE for discrete response model in Section 2.2. In Section 3 we provide

the concluding remarks. Technical details for computing error adjusted covariance matrix for
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the second stage parameter estimates are provided in Appendix C. Finally, in Appendix D

we provide a note on methodology employed to carry out numerical integration.

2 Model Specification

y∗
it = Z

y′
itϕϕϕ+X′

itϕ̃ϕϕ+ θθθi + ζζζ it, (2.1)

xit = Z′
itβββ + α̃ααi + εεεit, (2.2)

Equation (2.1) is the system of ‘n’ structural equations, where Z
y
it = diag(zy1it, . . . , z

y
nit)

and each of the z
y
kit, k ∈ {1, . . . , n}, is a vector of strictly exogenous variables. Let z

y
it be

the union of the exogenous variables appearing in Z
y
it. Xit = diag(x1it, . . . ,xnit), where each

of the xkit, k ∈ {1, . . . , n}, is a vector of endogenous regressors appearing in kth structural

equation. θθθi = (θ1i, . . . , θni)
′ is the vector of unobserved time invariant individual effect, while

ζζζit = (ζ1it, . . . , ζnit)
′ is the vector of idiosyncratic error component.

Equation (2.2) is the system of ‘m’ equations written in a reduced form for the endoge-

nous variables xit, where xit is continuous and is the union of all endogenous regressors in

(x′
1it, . . . ,x

′
nit)

′. Zit = diag(z1it, . . . , zmit) is the matrix of exogenous variables or instruments

appearing in each of the m reduced form equation in (2.2) and βββ = (βββ′
1, . . . ,βββ

′
m)′. For every

l ∈ (1, . . . ,m), zl = z = (zy′, z̃′)′, where the dimension of z̃ is greater than or equal to the di-

mension x. α̃ααi = (α̃i1, . . . , α̃m)′ are the unobserved individual effect for each of them equation,

and εεεit = (ε1it, . . . , εmit)
′ is the vector of idiosyncratic error terms. Let Zi = (z′i1, . . . , z

′
iT )

′

and Xi = {x′
i1, . . . ,x

′
iT }′.

We assume that the unobserved individual effects θθθi and α̃ααi, which we model as a random

effects, are normally distributed as
(
θθθi
α̃ααi

)
∼ N

[(
0
0

)(
Σθθ Σθα

Σαθ Σαα

)]
.

θθθi and αααi are assumed to be independent of ζζζ it and εεεit. The distribution of the idiosyncratic

error terms of the system of equations (2.1) (2.2), is given by:
(
ζζζit
εεεit

)
∼ N

[(
0
0

)(
Σζζ Σζε

Σεζ Σεε

)]
.
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Finally, while Zi is correlated with θθθi and αααi, conditional on θθθi and αααi, Zi is independent of ζζζit

and εεεit. Beyond assuming the above we do not place any restriction on the serial correlation

among ζζζit and εεεit.

To estimate the structural equations of the above model, given by the equations (2.1)

we develop a two stage estimation procedure. In the first stage the system of reduced form

equations, equation (2.2), is estimated. In the second stage, given the estimates of equation

(2.2), equations in (2.1) are estimated jointly. In the second stage additional correction

terms or “control variables”, obtained from the first stage reduced form estimates, correct

for the bias due to endogeneity of the x. In the subsections to follow, where we study the

identification of structural parameters for continuous and discrete response models, we show

the construction of correction terms.

2.1 The First Stage: Maximum Likelihood Estimation of Reduced Form

Equations

In the first stage of our econometric methodology we estimate the system of reduced form

equations

xit = Z′
itβββ + α̃ααi + εεεit, (2.2)

where xit is continuous. Since αααi and Zi are correlated in order to estimate δδδ, Σεε, and Σαα

consistently, we use Mundlak’s correlated random effects (CRE) formulation. We assume that

α̃ααi = Z̄
′
iδ̄δδ +αααi, (2.3)

where Z̄i = diag(z̄1i, . . . , z̄mi) and each of the z̄li, l ∈ {1, . . . ,m}, are the mean of time varying

variables in zlit = zit. Given the above, equation (2.2) can now be written as

xit = Z′
itβββ + Z̄

′
iδ̄δδ +αααi + εεεit,

which to ease notations we can write as

xit = Z
′
itδδδ +αααi + εεεit, (2.2a)

where Zit = diag((z′it, z̄
′
i)
′, . . . , (z′it, z̄

′
i)
′), and define δδδ = ((βββ′

1, δ̄δδ
′
1), . . . , (βββ

′
m, δ̄δδ

′
m))′. In the

modified reduced form equation (2.2a), αααi and εεεit are mutually uncorrelated, are independent

of Zit, and
(
θθθi
αααi

)
∼ N

[(
0
0

)(
Σθθ Λθα

Λαθ Λαα

)]
.
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The parameters, Θ1 = {δδδ,Σεε,Λαα}, of the modified equation (2.2a) can now be esti-

mated by a step-wise maximum likelihood method for seemingly unrelated regression (SUR)

developed by Biørn (2004). However, Biørn’s paper does not account for any possible serial

correlation among εεεit. For balanced panel Kobel (2004) provides a (SUR) estimator with first

order serial correlation among εεεit. If m = 1, then one can employ the methodology in Baltagi

and Li (1994) or Baltagi, Song, and Jung (2010). In what follows we will assume that there

is no serial dependence among the idiosyncratic component, εεεit, and employ Biørn’s method-

ology to estimate the reduced form equation (2.2a). In Appendix A we briefly describe the

methodology in Biørn (2004).

2.2 Identification for Continuous Response Model

The identification strategy that allows us to construct the control variables that correct for the

bias, which arises due to endogeneity of the regressors x, is based on the following conditional

mean restriction:

E(θθθi + ζζζit|Xi,Zi, α̃ααi) = E(θθθi + ζζζ it|Zi, εεεi, α̃ααi) = E(θθθi + ζζζit|εεεi, α̃ααi). (2.4)

According to the above, the mean dependence of the composite structural error term θθθi + ζζζit

on the vector of regressors Xi, Zi, and α̃ααi is completely characterized by the reduced form

error vectors εεεi and α̃ααi. The expectation of θθθ + ζζζit given α̃ααi and εεεi is given by

E(ζζζ it + θθθi|α̃ααi, εεεi) = E(ζζζ it|εεεi) + E(θθθi|α̃ααi) = E(ζζζ it|εεεit) + E(θθθi|α̃ααi)

= ΣζεΣ
−1
εε εεεit +ΣθαΣ

−1
ααα̃ααi

= Σ̃ζεΣεΣ
−1
εε εεεit + Σ̄θαα̃ααi

= Σ̃ζεΣ̃
−1
εε εεεit + Σ̄θαα̃ααi, (2.5)

where the first equality follows from the fact that ζζζ it is independent of αααi and θθθi is indepen-

dent of εεεit. The second equality follows from the assumption that conditional on εit, ζζζ it is

independent of εεεi−t . This assumption has also been made in Wooldridge (1995), Papke and

Wooldridge (2008), and Semykina and Wooldridge (2010)1. The (n×m) matrices Σ̃ζε in the

1This assumption can be relaxed and one can specify the dependence of ζζζit and εεεi without adding any
conceptual difficulties.
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fourth equality is

Σ̃ζε =



ρζ1ε1σζ1 . . . ρζ1εmσζ1

...
...

ρζnε1σζn . . . ρζnεmσζn




and the (m ×m) matrix Σε is diag(σε1, . . . , σεm), so that Σ̃ζεΣε = Σζε. Finally, in the last

equality Σ̃−1
εε = ΣεΣ

−1
εε . We prefer to write the above conditional expectation as E(ζζζ it +

θθθi|α̃ααi, εεεit) = Σ̃ζεΣ̃
−1
εε εεεit + Σ̃θαΣ̃

−1
ααα̃ααi since the elements of Σ̃−1

εε can be obtained from the es-

timates of the first stage reduced form estimation and, as we will see, it is the elements of

Σ̃ζε and Σ̄θα, which are estimated in the second stage structural estimation, that give us a

potential test of the exogeneity of xit with respect to ζζζ it and θ̃θθi.

The condition in (2.4) then implies that the conditional distribution of y∗
it given Xi, Zi,

and α̃ααi is given by

E(y∗
it|Xi,Zi, α̃ααi) = Z

y′
itϕϕϕ+X′

itϕ̃ϕϕ+ Σ̄θαα̃ααi + Σ̃ζεΣ̃
−1
εε εεεit

= Z
y′
itϕϕϕ+X′

itϕ̃ϕϕ+ Σ̄θα(Z̄
′
iδ̄δδ +αααi) + Σ̃ζεΣ̃

−1
εε εεεit = E(y∗

it|Xi,Zi,αααi) (2.6)

Given (2.5), the linear projections of θθθi+ζζζit in error form, given α̃ααi and εεεit, can be written as

θθθi + ζζζ it = Σ̄θα(Z̄
′
iδ̄δδ +αααi) + Σ̃ζεΣ̃

−1
εε εεεit + θ̄θθi + ζ̄ζζ it (2.7)

where θ̄θθi and ζ̄ζζ it are both normally distributed with mean 0 and are independent of Zi, Xi,

εεεit and αααi. The above then implies that the projections of y∗
it in error form given αααi and εεεit

is given by

y∗
it = Z

y′
itϕϕϕ+X′

itϕ̃ϕϕ+ Σ̄θα(Z̄
′
iδ̄δδ +αααi) + Σ̃ζεΣ̃

−1
εε εεεit + θ̄θθi + ζ̄ζζ it (2.8)

To estimate the above system of equation, the standard technique is to replace εεεit by

the residuals from the first stage reduced form regression. However, the residuals, xit −
E(xit|Zi,αααi) = xit−Z

′
itδδδ−αααi, are not identified because the αααi’s are unobserved, even though

δδδ, Λαα and Σεε are consistently estimated in the first stage estimation of the reduced form

equation (2.2a). It could be possible to estimate the structural parameters in (2.8) if we could

integrate out αααi with respect to its conditional distribution f(αααi|Xi,Zi). To see this, consider
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E(y∗it|Xi,Zi,αααi) in (2.6)

E(y∗it|Xi,Zi) =

∫
E(y∗it|Xi,Zi,αααi)f(αααi|Xi,Zi)dαααi

= Z
y′
itϕϕϕ+X′

itϕ̃+ Σ̄θαZ̄
′
iδ̄δδ + Σ̃ζεΣ̃

−1
εε (xit − Z′

itδδδ) +

∫
(Σ̄θααααi − Σ̃ζεΣ̃

−1
εε αααi)f(αααi|Xi,Zi)dαααi

= Z
y′
itϕϕϕ+X′

itϕ̃+ Σ̄θαZ̄
′
iδ̄δδ + Σ̃ζεΣ̃

−1
εε (xit − Z′

itδδδ) +

∫
(Σ̄θααααi − Σ̄ζεαααi)f(αααi|Xi)dαααi

= Z
y′
itϕϕϕ+X′

itϕ̃+ Σ̄θαZ̄
′
iδ̄δδ + Σ̃ζεΣ̃

−1
εε (xit − Z′

itδδδ) + Σ̄θαα̂ααi − Σ̃ζεΣ̃
−1
εε α̂ααi

= Z
y′
itϕϕϕ+X′

itϕ̃+ Σ̄θα(Z̄
′
iδ̄δδ + α̂ααi) + Σ̃ζεΣ̃

−1
εε (xit − Z′

itδδδ − α̂ααi)

= Z
y′
itϕϕϕ+X′

itϕ̃+ Σ̄θα(Z̄
′
iδ̄δδ + α̂ααi) + Σ̃ζεΣ̃

−1
εε ε̂εεit, (2.9)

where the second equality follows from the fact that Zi and αααi are independent. α̂ααi =

α̂ααi(Xi,Zi,Θ1) and Σ̃−1
εε α̂ααi = Σ̃−1

εε α̂ααi(Xi,Zi,Θ1) are the expected a posteriori (EAP) values of

the functions of time invariant individual effects αααi.

To obtain (2.9), using Bayes rule we can write f(ααα|X,Z) as

f(ααα|X) =
f(X|ααα)g(ααα)

h(X)
=

f(X,Z|ααα)g(ααα)
h(X,Z)

, (2.10)

where g and h are density functions. The above can be written as

f(X,Z|ααα)g(ααα)
h(X,Z)

=
f(X|Z,ααα)p(Z|ααα)g(ααα)

h(X|Z)p(Z)
,

By our assumption the time invariant individual effects, ααα, are independent of the exogenous

variables Z, hence p(Z|ααα) = p(Z), that is,

f(ααα|X) =
f(X|Z,ααα)g(ααα)

h(X|Z)
=

f(X|Z,ααα)g(ααα)∫
f(X|Z,ααα)g(ααα)dααα, (2.11)

Hence,

∫
Σ̃−1
εε αααf(ααα|X)d(ααα) =

∫
Σ̃−1
εε αααf(X|Z, α)g(ααα)dααα∫
f(X|Z,ααα)g(ααα)dααα

=

∫
Σ̃−1
εε αααi

∏T
t=1 f(xt|Z,ααα)g(ααα)dααα∫ ∏T

t=1 f(xt|Z,ααα)g(ααα)dααα
= Σ̃−1

εε α̂αα(X,Z, δδδ,Σεε,Λαα) (2.12)

where the second equality follow from the fact that conditional on Z and ααα, each of the xt,

xt ∈ {x1, . . . ,xT } are independently normally distributed with mean Z′
tδδδ + ααα and standard

deviation Σεε. g(ααα) by our assumption is normally distributed with mean zero and variance
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Λαα. Similarly we can obtain α̂αα(X,Z,Θ1). The functional form of Σ̃−1
εε α̂ααi(Xi,Zi,Θ1) is given

by:

Σ̃−1
εε α̂ααi(Xi,Zi,Θ1)

=

∫
Σ̃−1
εε ααα

∏T
t=1

1
(2π)m/2|Σεε|1/2 exp(−

1
2 (xt − Z

′
tδδδ −ααα)TΣ−1

εε (xt − Z
′
tδδδ −ααα))φ(ααα)dααα

∫ ∏T
t=1

1
(2π)m/2|Σεε|1/2 exp(−

1
2 (xt − Z′

tδδδ −ααα)TΣ−1
εε (xt − Z′

tδδδ −ααα))φ(ααα)dααα

=

∫
Σ̃−1
εε ααα exp(−1

2

∑T
t=1(xt − Z

′
tδδδ −ααα)′Σ−1

εε (xt − Z
′
tδδδ −ααα))φ(ααα)dααα

∫
exp(−1

2

∑T
t=1(xt − Z′

tδδδ −ααα)′Σ−1
εε (xt − Z′

tδδδ −ααα))φ(ααα)dααα

=

∫
Σ̃−1
εε Ca exp(−1

2

∑T
t=1(xt − Z

′
tδδδ −ααα)′Σ−1

εε (xt − Z
′
tδδδ − Ca))φ(a)da

∫
exp(−1

2

∑T
t=1(xt − Z′

tδδδ − Ca)′Σ−1
εε (xt − Z′

tδδδ − Ca))φ(a)da
(2.13)

where ααα = Ca, CC ′ being the Cholesky decomposition of the covariance matrix Λαα, so

that dααα = |C|da = |Λαα|1/2da. ˆ̂ααα(Xi,Zi.Θ̂1) and ˆ̃Σ−1
εε

ˆ̂ααα(Xi,Zi, Θ̂1), the estimated expected

a posteriori value of ααα and Σ̃−1
εε ααα respectively, can be estimated by employing numerical

integration techniques with respect to a at the estimated values δ̂, Σ̂εε, and Λ̂αα. In Appendix

D we provide a note on numerical technique employed to estimate ˆ̂ααα() and ˆ̃Σ−1
εε

ˆ̂ααα(). Also, it

can be shown that

Lemma 1 ˆ̂αααi(Xi,Zi, Θ̂1) and
ˆ̃Σ−1
εε

ˆ̂αααi(Xi,Zi, Θ̂1) converges a.s. to α̂ααi(Xi,Zi,Θ1) and

Σ̃−1
εε α̂ααi(Xi,Zi,Θ1) respectively, where Θ̂1 = {δ̂̂δ̂δ, Σ̂εε, Λ̂αα} are consistent first stage estimates.

Proof of Lemma 1 Given in Appendix B .

If population parameters, δδδ, Σεε, and Λαα, were known, the above implies that we could

write the linear predictor of y∗it, given Xi and Zi in error form as

y∗
it = Z

y′
itϕϕϕ+X′

itϕ̃+ Σ̄θα(Z̄
′
δ̄δδ + α̂ααi) + Σ̃ζεΣ̃

−1
εε ε̂εεit + θ̃θθi + ζ̃ζζ it, (2.14)

where we assume that θ̃θθi and ζ̃ζζ it are distributed with mean 0 and with variance Σθ̃θ̃ and Σζ̃ζ̃

respectively, and are independent of Zi, Xi. With estimates ˆ̂αααi and
ˆ̃Σ−1
εε
ˆ̂εεεit = Σ̃−1

εε (xit−Z′
itδ̂δδ−

ˆ̂αααi) in place, the system of equations in (2.14) can now be estimated as seemingly unrelated

regression (SUR). A panel version of SUR can be employed to gain efficiency.

We note here that for any k, k ∈ {1, . . . , n}, Σ̃ζkεΣ̃
−1
εε ε̂εεit and Σ̄θkαα̂ααi in (2.14) take the

form

ρζkε1σζkf1(Σεε, ε̂1it, . . . , ε̂mit) + . . .+ ρζkεmσζkfm(Σεε, ε̂1it, . . . , ε̂mit)
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and

ρ̄θkα1α̂1i + . . . + ρ̄θkαmσθk α̂mi

respectively, and where each of the f ’s above are linear in ε̂εεit. The estimates ρζkεlσζk , l ∈
{1, . . . ,m}, provides us with a test of exogeneity of the regressor xl with respect to ζk and

the estimates ρ̄θkαl
provides us with test of exogeniety of xl with respect to θk.

2.3 Identification for Discrete Response Models

Let n = 1 and suppose that yit is a binary variable, which takes value 0 or 1. Let y∗t be the

latent variable underlying yt, whose DGP is given by

y∗it = z
y′
itϕ+ x′

itϕ̃+ θi + ζit. (2.15)

To ease notations we let X = {zy∪x} andϕϕϕ = {ϕ∪ϕ̃}, then given the reduced form population

parameters, Θ1, the linear predictor of y∗it, given Xi and Zi, in error form as shown in (2.14)

is

y∗it = X ′
itϕϕϕ+ Σ̄θα(Z̄

′
iδ̄δδ + α̂ααi) + Σ̃ζεΣ̃

−1
εε ε̂εεit + θ̃i + ζ̃it, (2.16)

where θ̃i and ζ̃it are i.i.d. and normally distributed with mean 0 and variance σ2
θ̃
and σ2

ζ̃
.

From the fact that in probit models the parameters are identified only up to a scale, for an

individual i, the probability of yt = 1 given Xi and Zi is given by

Pr(yt = 1|X,Z) = Pr(yt = 1|X,Z, ε̂εεt, α̂αα) = Pr(y∗t > 0|X,Z, ε̂εεt, α̂αα)

= Φ

(
{X ′

tϕϕϕ+ Σ̄θα(Z̄
′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt}.(σ̃2θ + σ̃2ζ )

−1/2

)
, (2.17)

where the first equality follows from the fact that ε̂εεt and α̂αα is a function of X and Z. Φ() is

the cumulative standard normal density function. However, Pr(yt = 1|X,Z, ε̂εεt, α̂αα) = Pr(yt =

1|X,Z,E(εεεt|X,Z),E(ααα|X,Z)) is generally not equal to Pr(yt = 1|X,Z, εεεt,ααα). Our measure of

interest, however, is
∫
Pr(yt = 1|X,Z, εεεt,ααα)dg(εεεt,ααα), the average structural function, (ASF),

and the average partial effect (APE) of changing a variable, say zk, in time period t from zkt

to zkt +∆zk , given by

∆Pr(yt = 1)

∆zk

=

[ ∫
Pr(yt = 1|X,Z−1, zk−t , (zkt +∆zk), εεεt,ααα)dg(εεεt,ααα)

−
∫

Pr(yt = 1|X,Z−1, zk−t , zkt, εεεt,ααα)dg(εεεt,ααα)

]
/∆zk , (2.18)
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where g(εεεt,ααα) is the joint distribution function of εεεt and ααα. To recover the above measure in

(2.18), like Chamberlain (1984), we make an assumption about the conditional distribution

for α̃ααi. We assume that

α̃ααi = E(α̃ααi|Xi,Zi) + α̌ααi = E(Z̄
′
iδδδ +αααi|Xi,Zi) + α̌ααi = Z̄

′
iδ̄δδ + E(αααi|Xi,Zi) + α̌ααi

= Z̄
′
iδδδ + α̂ααi + α̌ααi, (2.19)

where α̌ααi is normally distributed with mean 0, variance Σα̌α̌, is independent of everything

else, and α̂ααi, as we have shown above, is

E(ααα|X) =

∫
αααf(ααα|X)d(ααα) = α̂αα(X,Z,Θ1).

The above implies that, conditional on X and Z, εεεt is distributed as

εεεt = xt − Z
′
tδδδ − α̂αα− α̌αα = ε̂εεt − α̌αα,

Hence, under the assumption about the conditional distribution of αααi, we can write (2.16) as

y∗t = X ′
tϕϕϕ+ Σ̄θα(Z̄

′
iδ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt + (Σ̄θα − Σ̃ζεΣ̃

−1
εε )α̌αα+ ζ̄t

= X ′
tϕϕϕ+ Σ̄θα(Z̄

′
iδ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt + ᾱ+ ζ̄t, (2.20)

where ᾱ = (Σ̄θα − Σ̃ζεΣ̃
−1
εε )α̌αα is uncorrelated with any of the covariates. Since ᾱ is a linear

combination of the elements in α̌αα, ᾱ is also normally distributed with a variance, say, σ2ᾱ, and

σ2
ζ̄
the variance of ζ̄, which is normally distributed with mean 0 and uncorrelated with any

of the covariates.

Now, having assumed the conditional distribution of αααi, for any individual i, we now have

Pr(yt = 1|X,Z, εεεt,ααα) = Pr(yt = 1|X,Z, ε̂εεt, α̂αα, ᾱ)

and
∫

Pr(yt = 1|X,Z, εεεt,ααα)dg(εεεt,ααα) =
∫

Pr(yt = 1|X,Z, ε̂εεt, α̂αα, ᾱ)dF (ε̂εεt, α̂αα, ᾱ),

where F (ε̂εεt, α̂αα, ᾱ) is the joint distribution function of the arguments. Now
∫

Pr(yt = 1|X,Z, α̂αα, ᾱ)dF (ε̂εεt, α̂αα, ᾱ) =
∫ ∫

Pr(yt = 1|X,Z, ε̂εεt, α̂αα, ᾱ)h(ᾱ|α̂αα)dᾱdG(ε̂εεt, α̂αα)

=

∫ ∫
Pr(yt = 1|X,Z, ε̂εεt, α̂αα, ᾱ, )h(ᾱ)dᾱdG(ε̂εεt, α̂αα)

=

∫
Pr(yt = 1|X,Z, ε̂εεt, α̂αα)dG(ε̂εεt, α̂αα), (2.21)
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where G(ε̂εεt, α̂αα) is the distribution of ε̂εεt and α̂αα, and h(ᾱ|α̂αα) is the conditional distribution of ᾱ

given εεεt and α̂αα. The second equality above follows from the fact that ε̂εεt and α̂αα is independent

of ᾱ. Thus we have shown that

∫
Pr(yt = 1|X,Z, εεεt,ααα)dg(εεεt,ααα) =

∫
Pr(yt = 1|X,Z, ε̂εεt, α̂αα)dG(ε̂εεt, α̂αα)

=

∫ [ ∫
Φ

({
X ′
tϕϕϕ+ Σ̄θα(Z̄

′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt + ᾱ

}
1

σζ̄

)
h(ᾱ)dᾱ

]
dG(ε̂εεt, α̂αα)

=

∫
Φ

({
X ′
tϕϕϕ+ Σ̄θα(Z̄

′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

}
1

(σ2
ζ̄
+ σ2ᾱ)

1/2

)
dG(ε̂εεt, α̂αα)

=

∫
Φ

(
X ′
tϕ+ Σ̄θα(Z̄

′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)
dG(ε̂εεt, α̂αα) (2.22)

where, with a slight abuse of notation, we denote ϕϕϕ, Σ̄θα, and Σ̃ζε as the scaled vector

of coefficients, the scaling factor being 1
(σ2

ζ̄
+σ2

ᾱ)
1/2 . The coefficients ϕϕϕ, Σ̄θα, and Σ̃ζε can

be obtained by simply running a pooled probit regression. While pooled probit consistently

estimates the scaled vector of coefficients, it is likely to be inefficient. It is possible to estimate

the parameters more efficiently than pooled probit that is still consistent under the same set

of assumptions. One possibility is minimum distance estimation. That is, estimate a separate

models for each t, and then impose the restrictions using minimum distance methods.

To obtain the sample analog of RHS of (2.22) for any fixed Xit = X̄ we can compute

1
∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

Pr(yit = 1|X̄ , ˆ̂εεεit, ˆ̂αi) =
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

Φ

(
X̄ ′ϕ̂ϕϕ+ ˆ̄Σθα(Z̄

′
i
ˆ̄δδδ + ˆ̂αααi) +

ˆ̃Σζε
ˆ̃Σ−1
εε
ˆ̂εεεit

)
,

(2.23)

which will converge to
∫
Pr(yit = 1|X̄ , ε̂εεit, α̂ααi)dG(ε̂εεit, α̂ααi) in probability as

∑N
i=1 Ti = N → ∞.

The coefficients indicated above are the optimal first stage reduced form and second stage

structural estimates. With (2.23) we can now compute (2.18), the mean effect or the average

partial effect (APE), of changing a variable, say, wt, where wt is an element of either xt or

z
y
t , from wt to wt + ∆w. In the limit when ∆w tends to zero, and since the integrand is a

smooth function of its arguments we can change the order of differentiation and integration

in (2.18) to get

∂ Pr(yt = 1)

∂w
=

∫
ϕwφ

(
X̄ ′ϕϕϕ+ Σ̄θα(Z̄

′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)
dG(ε̂εεt, α̂αα), (2.24)

where φ is the density function of a standard normal. Then, for any fixed Xit = X̄ , an estimate
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of the APE of w, the sample analog of the RHS in (2.24), can be computed as follows:

∂P̂r(yit = 1)

∂w
=

1∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

ϕ̂wφ

(
X̄ ′ϕ̂ϕϕ+ ˆ̄Σθα(Z̄

′
i
ˆ̄δδδ + ˆ̂αααi) +

ˆ̃Σζε
ˆ̃Σ−1
εε
ˆ̂εεεit

)
, (2.25)

which converges in probability to its true value in (2.24) as
∑N

i=1 Ti = N → ∞.

Suppose, w is dummy variable taking values 0 and 1, then the APE of change of wit from

0 to 1, at population parameters, on the probability of yit = 1, given other covariates, is given

by

∫ [
Φ

(
X̄ f ′
−wϕϕϕ−w + ϕw + Σ̄θα(Z̄

′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)

− Φ

(
X̄ f ′
−wϕϕϕ−w + Σ̄θα(Z̄

′
δ̄δδ + α̂αα) + Σ̃ζεΣ̃

−1
εε ε̂εεt

)]
dG(ε̂εεt, α̂αα), (2.26)

whose sample analog, given Xit−w = X̄
−w , the estimated first and second stage coefficients,

ˆ̂εεεit, and ˆ̂αααi, can be computed by employing (2.23) for w = 1 and w = 0.

Finally, we would like to add that though we have elucidate our methodology for binary

response model, it can be applied to other nonlinear models such as tobit or bivariate probit.

3 Concluding Remarks

The primary objective of the paper has been to come up with an estimator for nonlinear mod-

els of panel data that takes the unobserved heterogeneity, its correlation with the regressors,

and the endogeneity of a subset of regressors that are correlated with unobserved hetero-

geneity and the idiosyncratic component into account. “Average partial effects”, (APE), a

measure that is important to measure the effectiveness of policy initiative has also been con-

structed. To achieve the above mentioned end we combined the methodology of “correlated

random effect” (CRE) with the “control function” (CF) approach to come up with control

functions that correct for bias that can arise due some regressors being correlated with the

unobserved heterogeneity components as well as the idiosyncratic component. The control

functions that we construct are based on “expected a posteriori” (EAP) values of unobserved

heterogeneity/individual effects that appear as conditioning variables in the structural equa-

tion and which are correlated with the exogenous as well as endogenous variables. To compute

the EAP values of the individual effects numerical integration with respect to the estimated –

estimated using the first stage reduced form estimates – posterior distribution is performed.
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Since the EAP values are functions of the endogenous as well as exogenous regressors, with

EAP values of individual effects substituted for the individual effects, the correlation between

the covariates and the unobserved individual effects are accounted for.

While we have developed an estimator for nonlinear panel data and constructed a mea-

sure of APE, the main contribution of this paper has been to suggest two set of tests for

endogeneity: one for endogeneity with respect to unobserved heterogeneity, and another with

respect to idiosyncratic component for a subset of regressors that are deemed potentially en-

dogenous. Moreover, our methodology circumvents the need for specifying a Mundlak (1978)

or Chamberlain (1984) type specification for the conditional distribution of the unobserved

heterogeneity in the structural equation. This allows us to conserves on degrees of freedom

and to estimate the structural parameters of interest with much more precision when there

is not enough variation among the regressors across time.

Our structural model, however, is static. Our next step is to incorporate dynamics in our

estimation methodology. Besides, our methodology takes care of only of endogenous regressors

that are continuous. Our next endeavor is to develop an estimator that accounts for both

continuous and discrete endogenous regressors along the methodology proposed here. Thirdly,

we would like to mention that our estimate of the EAP values of the unobserved individual

effects are based on the parametric specification. For future research it would be worthwhile

to investigate nonparametric methods to estimate the EAPs, which could then possibly lead

to semiparametric estimation of the structural equation similar to that suggested by Blundell

and Powell (2003).

References

Amemiya, T. (1971): “The Estimation of the Variances in a Variance-Components Model,”

International Economic Review, 2, 1–13.

Arellano, M. (2003): “Discrete Choices with Panel Data,” Investigaciones Econmicas, 27,

423–458.

Arellano, M., and S. Bonhomme (2011): “Nonlinear Panel Data Analysis,” Annual Re-

view of Economics, forthcoming.

16



Arellano, M., and J. Hahn (2006): “A Likelihood-based Approximate Solution to the

Incidental Parameter Problem in Dynamic Nonlinear Models with Multiple Effects,” .

(2007): “Understanding Bias in Nonlinear Panel Models: Some Recent Develop-

ments,” in Advances in Economics and Econonometrics: Theory and Applications, Ninth

World Congress, ed. by W. N. R. Blundell, and T. Persson. Cambridge University Press,

Cambridge.

Arellano, M., and B. Honore (2001): “Panel Data Models: Some Recent Developments,”

in Handbook of Econometrics, ed. by J. Heckman, and E. Leamer, vol. 5, pp. 3229–3296.

Elsevier.

Baltagi, B. H., and Q. Li (1994): “Estimating Error Component Models with General

MA(q) Disturbances,” Journal of Econometrics, 10(2), 396–408.

Baltagi, B. H., S. H. Song, and B. C. Jung (2010): “Testing for Heteroskedasticity and

Serial Correlation in a Random Effects Panel Data Model,” Journal of Econometrics, 154,

122–124.

Bester, A., and C. Hansen (2007): “Flexible Correlated Random Effects Estimation in

Panel Models with Unobserved Heterogeneity,” Technical report, mimeo.

Bester, C. A., and C. Hansen (2009): “A Penalty Function Approach to Bias Reduction in

Non-linear Panel Models with Fixed Effects,” Journal of Business and Economic Statistics,

27(2), 131–148.

Biørn, E. (2004): “Regression Systems for Unbalanced Panel Data: A Stepwise Maximum

Likelihood Procedure,” Journal of Econometrics, 122, 281–291.

Blundell, R., and J. Powell (2003): “Endogeneity in Nonparametric and Semiparametric

Regression Models,” in Advances in Economics and Econonometrics: Theory and Appli-

cations, Eighth World Congress, Vol. II, ed. by L. H. M. Dewatripont, and S. Turnovsky.

Cambridge University Press, Cambridge.

Carro, J. (2007): “Estimating Dynamic Panel Data Discrete Choice Models with Fixed

Effects,” Journal of Econometrics, 140(2), 503–528.

17



Chamberlain, G. (1984): “Panel Data,” in Handbook of Econometrics, ed. by Z. Griliches,

and M. D. Intriligator, vol. 2. Elsevier.

(2010): “Binary Response Models for Panel Data: Identification and Information,”

Econometrica, 78, 159–168.

Chernozhukov, V., I. Fernandez-val, J. Hahn, and W. Newey (2009): “Identification

and Estimation of Marginal Effects in Nonlinear Panel Models,” Unpublished Manuscript.

Chernozhukov, V., I. Fernandez-val, and W. Newey (2009): “Quantile and Average

Effects in Nonseparable Panel Models,” CeMMAP working papers.

Chernozhukov, V., J. Hahn, and W. Newey (2005): “Bound analysis in panel models

with correlated random effects,” Technical report, MIT, UCLA.

Cools, R., and A. Haegemans (1994): “An Imbedded Family of Cubature Formulae for

n-dimensional Product Regions,” Journal of Computational and Applied Mathematics, 51,

251–260.

Fernandez-Val, I. (2009): “Fixed effects estimation of structural parameters and marginal

effects in panel probit models,” Journal of Econometrics, 150(1), 71–85.

Genz, A., and B. Keister (1996): “Fully Symmetric Interpolatory Rules for Multiple

Integrals over Infinite Regions with Gaussian Weight,” Journal of Computation and Applied

Mathematics, 71, 299–309.

Hahn, J., and G. Kuersteiner (2011): “Bias Reduction for Dynamic Nonlinear Panel

Models with Fixed Effects,” Econometric Theory.

Hahn, J., and W. Newey (2004): “Jackknife and Analytical Bias Reduction for Nonlinear

Panel Models,” Econometrica, 72, 1295 – 1319.

Honore, B., and E. Tamer (2006): “Bounds on Parameters in Panel Dynamic Discrete

Choice Models,” Econometrica, 74(3), 611–629.

Kobel, B. M. (2004): “First-order serial correlation in seemingly unrelated regressions,”

Economics Letters, 82(1), 1–7.

18



Krommer, A. R., and C. W. Ueberhuber (1994): Numerical Integration: on Advanced

Computer Systems (Lecture Notes in Computer Science). Springer-Verlag, 1 edn.

Lancaster, E. (2000): “The incidental parameter problem since 1948,” Journal of Econo-

metrics, 95(2), 391–413.

Lutkepohl, H. (1996): Handbook of Matrices. Wiley, Chichester.

Magnus, J.R., H. N. (1988): Matrix Differential Calculus with Applications in Statistics

and Econometrics. Wiley, Chichester.

Mundlak, Y. (1978): “On the Pooling of Time Series and Cross Section Data,” Economet-

rica, 46, 69–85.

Newey, W. K. (1984): “A Method of Moment Interpretation of Sequential Estimators,”

Economics Letters, 14, 201–206.

Neyman, J., and E. Scott (1948): “Consistent estimates based on partially consistent

observations,” Econometrica, 16(1), 1–32.

Papke, L. E., and J. M. Wooldridge (2008): “Panel data methods for fractional response

variables with an application to test pass rates,” Journal of Econometrics, 145, 121–133.

Semykina, A., and J. Wooldridge (2010): “Estimating panel data models in the presence

of endogeneity and selection,” Journal of Econometrics, 157, 375–380.

Weidner, M. (2011): “Semiparametric Estimation of Nonlinear Panel Data Models with

Generalized Random Effects,” Working Paper, University College London.

Wooldridge, J. M. (1995): “Selection Corrections for Panel Data Models Under Condi-

tional Mean Independence Assumptions,” Journal of Econometrics, 68, 115–132.

(2009): “Correlated Random Effects Models with Unbalanced Panels,” Working

Paper, Michigan State University, Department of Economics.

Woutersen, T. (2002): “Robustness against Incidental Parameters,” Unpublished

Manuscript.

19



Appendix A: Maximum Likelihood Estimation of the Reduced

form Equations

In this section we briefly describe Biørn (2004) step wise maximum likelihood procedure to

estimate the reduced form system of equation

xit = Z
′
itδδδ +αααi + εεεit. (A-1)

While Biørn (2004) deals with unbalanced panel, here we assume that our panel is balanced.

Let N be the total number of individuals. Let N be the total number of observations, i.e.,

N = NT . Let xi(T ) = (x′
i1, . . . x

′
ip)

′, Zi(T ) = (Z′
i1, . . .Z

′
iT )

′ and εεεi(T ) = (εεε′i1, . . . εεε
′
iT )

′ and write

the model as

xi(T ) = Z
′
i(T )δδδ + (ep ⊗αααi) + εεεi(T ) = Z

′
i(T )δδδ + uuui(T ), (A-2)

E(uuui(T )uuu
′
i(T )) = IT ⊗ Σεε + ET ⊗ Λαα = KT ⊗Σεε + JT ⊗ Σ(T ) = Ωu(T ) (A-3)

where

Σ(T ) = Σεε + TΛαα, (A-4)

and IT is the T dimensional identity matrix, eT is the (T × 1) vector of ones, ET = eT e
′
T ,

JT = (1/T )ET , and KT = IT − JT . The latter two matrices are symmetric and idempotent

and have orthogonal columns, which facilitates inversion of Ωu(T ).

A.1 GLS estimation

Before addressing the maximum likelihood problem, we consider the GLS problem for δδδ when

Λα and Σεε are known. Define Qi(T ) = uuu′i(T )Ω
−1
u(T )uuui(T ), then GLS estimation is the problem of

minimizing Q =
∑N

i=1Qi(T ) with respect to δδδ. Since Ω−1
u(T ) = KT ⊗Σ−1

εε +JT ⊗(Σεε+TΛαα)
−1,

we can rewrite Q as

Q =

N∑

i=1

uuu′i(T )[Kp ⊗ Σ−1
εε ]uuui(T ) +

N∑

i=1

uuu′i(T )[JT ⊗ (Σεε + TΛαα)
−1]uuui(T ). (A-5)
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GLS estimator of δδδ when Λαα and Σεε are known is obtained from ∂Q/∂δδδ = 0, and is given

by

δ̂δδGLS =

[ N∑

i=1

Z
′
i(T )[KT ⊗ Σ−1

εε ]Zi(T ) +
N∑

i=1

Z
′
i(T )[JT ⊗ (Σεε + TΛαα)

−1]Zi(T )

]−1

×

[ N∑

i=1

Z
′
i(T )[KT ⊗ Σ−1

εε ]xxxi(T ) +

N∑

i=1

Z
′
i(T )[JT ⊗ (Σεε + TΛαα)

−1]xxxi(T )

]
. (A-6)

A.1.1 Maximum Likelihood Estimation

Now consider ML estimation of δδδ, Σεε, and Λαα. Assuming normality of the individual effects

and the disturbances, i.e., αααi ∼ IIN(0,Λαα) and εεεit ∼ IIN(0,Σεε), then uuui(T ) = (eT ⊗ αααi) +

εεεi(T ) ∼ IIN(0mT,1,Ωu(T )). The log-likelihood functions of all x’s conditional on all Z’s for an

individual and for all individuals in the data set then become, respectively,

Li(T ) =
−mT
2

ln(2π)− 1

2
ln |Ωu(T )| −

1

2
Qi(T )(δδδ,Σεε,Λαα), (A-7)

L =
N∑

i=1

Li(T ) =
−mNT

2
ln(2π)− 1

2
N ln |Ωu(T )| −

1

2

N∑

i=1

Qi(T )(δδδ,Σεε,Λαα), (A-8)

where

Qi(T )(δδδ,Σεε,Λαα) = [xi(T ) − Z
′
i(T )δδδ]

′[Kp ⊗ Σ−1
εε + Jp ⊗ (Σεε + pΛαα)

−1][xi(T ) − Z
′
i(T )δδδ],

(A-9)

and |Ωu(T )| = |Σ(T )||Σεε|T−1.

Biørn (2004) splits the problem of estimation into: (A) Maximization of L with respect

to δδδ for given Σεε and Λαα and (B) Maximization of L with respect to Σεε and Λαα for given

δδδ. Subproblem (A) is identical with the GLS problem, since maximization of L with respect

to δδδ for given Σεε and Λαα is equivalent to minimization of
∑P

p=1

∑
i∈I(p) Q(p)(δδδ,Σεε,Λαα),

which gives (7). To solve subproblem(B) Biørn (2004) derives expressions for the derivatives

of both Lp and L with respect to Σεε and Λαα. The complete stepwise algorithm for solving

jointly subproblems (A) and (B) then consists in switching between (A-6) and minimizing

(A-8) with respect to Σεε and Λαα to obtain Σεε and Λαα and iterating until convergence.
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The covariance matrix of δδδ, vech(Λαα) and vech(Σεε) is given by

V




δδδ
vech(Λαα)
vech(Σεε)


 =



∑N

i=1




∂Li(T )(δ̂δδ,Σ̂εε,Λ̂αα)

∂δδδ
∂Li(T )(δ̂δδ,Σ̂εε,Λ̂αα)

∂vech(Λαα)
∂Li(T )(δ̂δδ,Σ̂εε,Λ̂αα)

∂vech(Σεε)







∂Li(T )(δ̂δδ,Σ̂εε,Λ̂αα)

∂δδδ′

∂Li(T )(δ̂δδ,Σ̂εε,Λ̂αα)

∂vech(Λαα)′

∂Li(T )(δ̂δδ,Σ̂εε,Λ̂αα)

∂vech(Σεε)′







−1

(A-10)

where each of the above is computed at the estimated values Σ̂εε, Λ̂αα, and δ̂δδ, and vech(Σεε)

and vech(Λαα) are column-wise vectorization of the lower triangle of the symmetric matrix

Σεε and Λαα and each are m(m+1)
2 column matrices. Biørn (2004) has derived the first order

conditions with respect to Σεε and Λαα. The first order condition with respect to δδδ can be

easily obtained. Here we state the first order conditions for the likelihood function for an

individual i with respect to vech(Σεε) and vech(Λαα), which can then be used to compute

the covariance matrix of the first stage reduced form estimates given in (A-10). It can shown

that

∂Li(T )

∂vech(Σεε)
= −1

2
Lmvec

[
Σ−1
(T ) + (T − 1)Σ−1

εε − Σ−1
(T )Bui(T )Σ

−1
(T ) − Σ−1

εε Wui(T )Σ
−1
εε

]
,

and

∂Li(T )

∂vech(Λαα)
= −1

2
Lmvec

[
TΣ−1

(T ) − TΣ−1
(T )Bui(T )Σ

−1
(T )

]
,

where Lm is an elimination matrix. Wui(T ) and Bui(T ) respectively are defined as follows

Wui(T ) = Ẽi(T )KT Ẽ
′
i(T ) and Bui(T ) = Ẽi(T )JT Ẽ

′
i(T ), (A-11)

where the disturbances defined in (A-2) for an individual i, have been arranged in a (m× T )

matrix Ẽi(T ) = [uuui1, . . . ,uuuiT ] so that uuui(T ) = vec(Ei(T )), ‘vec’ being the vectorization operator.

Appendix B: Proofs

B.1 Lemma 1

ˆ̂αααi(Xi,Zi, Θ̂1) and
ˆ̃Σ−1
εε

ˆ̂αααi(Xi,Zi, Θ̂1) converges a.s. to α̂ααi(Xi,Zi,Θ
∗
1) and Σ̃∗−1

εε α̂ααi(Xi,Zi,Θ
∗
1)

respectively, where Θ̂1 = {δ̂̂δ̂δ′, vech(Σ̂εε)
′, vech(Λ̂αα)

′}′ is consistent first stage estimates and Θ∗
1

is the true population parameter.

Proof: Now for an individual i

Σ̃−1
εε α̂αα(X,Z,Θ1) =

∫
ΣεΣ

−1
εε Ca exp(−1

2

∑T
t=1(xt − Z

′
tδδδ −ααα)′Σ−1

εε (xt − Z
′
tδδδ − Ca))φ(a)da

∫
exp(−1

2

∑T
t=1(xt − Z′

tδδδ − Ca)′Σ−1
εε (xt − Z′

tδδδ − Ca))φ(a)da

=

∫
Σ(Θ1, a) exp(−1

2r(Θ1, a))φ(a)da∫
exp(−1

2r(Θ1, a))φ(a)da
, (B-1)
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where ααα = Ca, CC ′ being the Cholesky decomposition of the covariance matrix Λαα, so that

dααα = |C|da = |Λαα|1/2da, Σ(Θ1, a) = ΣεεΣ
−1
εε Ca, and finally r(Θ1, a) =

∑T
t=1(xt − Z

′
tδδδ −

Ca)′Σ−1
εε (xt − Z

′
tδδδ − Ca).

First consider the expression in the numerator
∫
Σ(Θ1, a) exp(−1

2r(Θ1, a))φ(a)da. Now,

Σ(Θ1, a) = ΣεΣ
−1
εε Ca is an m × 1 matrix and continuous in Θ1 and a. Let Σl(Θ1, a) be the

lth element of Σ(Θ1, a). Now, by the assumptions of MLE we know that Θ1Θ1Θ1 is a compact set,

where Θ1 ∈ Θ1Θ1Θ1, and also for a given a, |Σl(Θ1, a)|, |.| being the absolute value of its argument,

is continuous in Θ1. Therefore |Σl(Θ1, a)| attains its supremum on Θ1Θ1Θ1. Let

Θa

l1 = argmax
Θ1∈Θ1Θ1Θ1

|Σl(Θ1, a)|, (B-2)

then by an application of the Maximum Theorem we can conclude that |Σl(Θ
a

l1, a)| is continu-
ous in a. The above then implies that |Σl(Θ

a

l1, a)| ≥ Σl(Θ1, a) exp(−1
2r(Θ1, a)) ∀Θ1 ∈ Θ1Θ1Θ1. We

also know that Θ̂1
a.s.−→ Θ∗

1, and since each of the Σl(Θ1, a) exp(−1
2r(Θ1, a)), l ∈ {1, . . . ,m},

is continuous in Θ1 and a, Σl(Θ̂1, a) exp(−1
2r(Θ̂1, a))

a.s.−→ Σl(Θ
∗
1, a) exp(−1

2r(Θ
∗
1, a)) for any

given a. Thus by an application of Lebesque Dominated Convergence Theorem we can con-

clude that
∫
Σl(Θ̂1, a) exp(−1

2r(Θ̂1, a))φ(a)da
a.s.−→

∫
Σl(Θ

∗
1, a) exp(−1

2r(Θ
∗
1, a))φ(a)da.

Define Σ(Θa
1, a) = {|Σ1(Θ

a
11, a)|, . . . , |Σm(Θa

m1, a)|}′, then Σ(Θa
1, a) ≥ Σ(Θ1, a) exp(−1

2r(Θ1, a))

∀Θ1 ∈ Θ1Θ1Θ1, and Lebesque Dominated Convergence Theorem implies that

∫
Σ(Θ̂1, a) exp(−

1

2
r(Θ̂1, a))φ(a)da

a.s.−→
∫

Σ(Θ∗
1, a) exp(−

1

2
r(Θ∗

1, a))φ(a)da.

Also, since 1 ≥ exp(−1
2r(Θ1, a)), we can conclude that

∫
exp(−1

2
r(Θ̂1, a))φ(a)da

a.s.−→
∫

exp(−1

2
r(Θ∗

1, a))φ(a)da.

Given that both the numerator and the denominator in (B-1) defined at Θ̂1 converge almost

surly to the same defined at Θ∗
1, it can now be easily shown that

ˆ̃Σ−1
εε

ˆ̂ααα(X,Z, Θ̂1)
a.s.−→ Σ̃∗−1

εε α̂αα(X,Z,Θ∗
1).

Appendix C: Asymptotic Covariance Matrix of the Second

Stage Structural Estimates

Newey (1984) has shown that sequential estimators can be interpreted as members of a class

of Method of Moments (MM) estimators and that this interpretation facilitates derivation of

23



asymptotic covariance matrices for multi-step estimators. Let Θ = {Θ′
1,Θ

′
2}′, where Θ1 and

Θ2 are respectively the parameters to be estimated in the first and second step estimation of

the sequential estimator. Following Newey (1984) we write the first and second step estimation

as an MM estimation based on the following population moment conditions:

E(Li(T )Θ1
) = E

∂ lnLi(T )(Θ1)

∂Θ1
= 0 (C-1)

E(Hi(T )Θ2
(Θ1,Θ2)) = 0 (C-2)

and where Li(T )(Θ1) is the likelihood function for individual i belonging to group p, for the

first step system of reduced form equations and E(Hi(T )Θ2
(Θ1,Θ2)) is the population moment

condition for estimating Θ2. If in the second stage we are to use likelihood technique to

estimate the second stage parameters Θ2 then E(Hi(T )Θ2
(Θ1,Θ2)) = E(Li(T )2Θ2

(Θ1,Θ2)) =

E
∂ lnLi(T )2(Θ1,Θ2)

∂Θ2
= 0 where Li(T )2(Θ1,Θ2) is the likelihood function for an individual for the

second step estimation.

The estimates for Θ1 and Θ2 are obtained by solving the sample analog of the above

population moment conditions. The sample analog of moment conditions for the first step

estimation is given by

1

N
LΘ1(Θ̂1) =

1

N

N∑

i=1

∂ lnLi(T )(Θ̂1)

∂Θ1
(C-3)

where Li(Θ1) is given by equation (A-7) in Appendix A. Θ1 = {δδδ′, vech(Λαα)
′, vech(Σεε)

′}′

and N is the total number of individuals/firms.

Under standard regularity conditions, which our assumptions satisfy, the first step, re-

duced form ML estimate, Θ̂1, obtained by solving 1
NLΘ1(Θ̂1) = 0 is consistent, and that

√
N(Θ̂1 − Θ∗

1) is asymptotically distributed as N(0,ΣΘ1). ΣΘ1 = I(Θ∗
1)

−1 = lim 1
N V1(Θ̂1),

where I(Θ∗
1) is the information matrix, Θ∗

1 is the true value of Θ1, and V1(Θ̂1) is the esti-

mated asymptotic covariance matrix of Θ̂1 given in (A-10). Amemiya (1971) discusses the

estimation and asymptotic properties of the variance of the error components obtained by

ML method for two way random effect model for the case of a single equation. While the

analysis in Amemiya (1971) can be extended to a multiple equation setting, here we do not

work out the details of ΣΘ1 , but only state that, given the regularity conditions of MLE,

1
N V1(Θ̂1) converges to ΣΘ1 , a positive definite matrix.
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The sample analog of population moment condition for the second step estimation is given

by

1

N
HΘ2(Θ̂1, Θ̂2) =

1

N

N∑

i=1

Hi(T )Θ2
(Θ̂1, Θ̂2) (C-4)

where Θ2 = {ϕϕϕ′, ϕ̃ϕϕ′, vec(Σ̄θα)
′, vec(Σ̃ζε)

′}′, which with a abuse of notation we write as Θ2 =

{ϕϕϕ′, vec(Σ̄θα)
′, vec(Σ̃ζε)

′}′. If we pool all the observations together as, for example, in the

probit model discussed earlier, we have

1

N
HΘ2(Θ̂1, Θ̂2) =

1

N

N∑

i=1

Hi(T )Θ2
(Θ̂1, Θ̂2) =

1

N

N∑

i=1

T∑

t=1

HitΘ2(Θ̂1, Θ̂2). (C-5)

We have shown that with EAP values α̂ααi(Xi,Zi,Θ1) substituted for αααi still leads to the

identification of Θ2. Let Θ∗
2 be the true values of Θ2. Under the assumptions we make,

solving 1
N

∑N
i=1

∑Ti
t=1HitΘ2(Θ̂1,Θ2) = 0 is asymptotically equivalent to solving

1
N

∑N
i=1

∑Ti
t=1HitΘ2(Θ

∗
1,Θ2) = 0, where Θ̂1 is a consistent first step estimate of Θ1. Hence

Θ̂2 obtained by solving 1
NHΘ2(Θ̂1, Θ̂2) = 0 is a consistent estimate of Θ2. Newey (1984)

has derived the asymptotic distribution of the second step estimates of a two step sequential

estimator.

To derive the asymptotic distribution of the second step estimates Θ̂2, consider the stacked

up sample moment conditions

1

N

[
LΘ1(Θ̂1)

HΘ2(Θ̂1, Θ̂2)

]
= 0, (C-6)

A series of Taylor’s expansion of LΘ1(Θ̂1), HΘ2(Θ̂1, Θ̂2) and around Θ∗ gives

1

N

[
LΘ1Θ1 0
HΘ2Θ1 HΘ2Θ2

] [√
N(Θ̂1 −Θ∗

1)√
N(Θ̂2 −Θ∗

2))

]
= − 1√

N

[
LΘ1

HΘ2 .

]
(C-7)

In matrix notation the above can be written as

BΘΘN

√
N(Θ̂−Θ) = − 1√

N
ΛΘN

,

where ΛΘN
is evaluated at Θ∗ and BΘΘN

is evaluated at points somewhere between Θ̂ and

Θ∗. Under the standard regularity conditions for Generalized Method of Moments (GMM),

see Newey (1984), BΘΘN
converges in probability to the lower block triangular matrix B∗ =

limE(BΘΘN
). B∗ is given by

B∗ =

[
LΘ1Θ1 0
HΘ2Θ1 HΘ2Θ2

]
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where LΘ1Θ1 = E(Li(T )Θ1Θ1
), HΘ2Θ1 = E(Hi(T )Θ2Θ1

). 1√
N
ΛN converges asymptotically in

distribution to a normal random variable with mean zero and a covariance matrix A∗ =

limE 1
NΛNΛ′

N , where A∗ is given by

A∗ =

[
VLL VLH
VHL VHH

]
,

and a typical element of A∗, say VLH , is given by VLH = E[Li(T )Θ1
(Θ1)Hi(T )Θ2

(Θ1,Θ2)
′].

Under the regularity conditions
√
N(Θ̂ − Θ∗) is asymptotically normal with zero mean and

covariance matrix given by B−1
∗ A∗B−1′

∗ .

√
N(Θ̂−Θ∗)

a∼ N[(0), (B−1
∗ A∗B

−1′
∗ )] (C-8)

Now, since at Θ∗
1, to which Θ̂1 converges,

LΘ1Θ1 = E

[
∂Li(T )(Θ1)

∂Θ1Θ
′
1

]
= −E

[
∂Li(T )(Θ1)

∂Θ1

∂Li(T )(Θ1)

∂Θ′
1

]
= −E[Li(T )Θ1

(Θ1)Li(T )Θ1
(Θ1)

′],

we can employ the derivative Li(T )(Θ1) of with respect to Θ1 to compute Li(T )Θ1Θ1
. In (C-8)

by an application of the partitioned inverse formula we get

L
−1
Θ1Θ1

VLLL
−1′
Θ1Θ1

= V ∗
1 , (C-9)

where V ∗
1 = ΣΘ1 is the asymptotic covariance matrix of Θ̂1 based on maximization of L(Θ1).

To derive the asymptotic distribution of
√
N(Θ̂2−Θ∗

2), again an application of partitioned

inverse formula and some matrix manipulation we get the asymptotic covariance matrix of
√
N(Θ̂2 −Θ∗

2), V
∗
2 , where

V ∗
2 = H

−1
Θ2Θ2

VHHH
−1′
Θ2Θ2

+H
−1
Θ2Θ2

HΘ2Θ1{L
−1
Θ1Θ1

VLLL
−1′
Θ1Θ1

}H′
Θ2Θ1

H
−1′
Θ2Θ2

−H
−1
Θ2Θ2

{HΘ2Θ1L
−1
Θ1Θ1

VLH + VHLL
−1′
Θ1Θ1

H
′
Θ2Θ1

}H−1′
Θ2Θ2

. (C-10)

To estimate the asymptotic covariance matrix V ∗
2 , sample analog of the B∗ and A∗, BN and

AN = 1
NΛNΛ′

N respectively, given in (C-7) can be computed. A typical element of AN , say

VLHN
, is given by VLHN

= 1
N

∑N
i=1Li(T )Θ1

(Θ̂1)Hi(T )Θ2
(Θ̂1, Θ̂2)

′.

Now, while computation of HΘ2Θ2 in (C-7) is straight forward, computation of HΘ2Θ1 =
∑N

i=1

∑T
t=1HitΘ2Θ1 =

∑N
i=1

∑T
t=1

∂HitΘ2
(Θ1,Θ2)

∂Θ′
1

is challenging because Θ1 enters the second

stage of the sequential estimator through Z̄
′
iδ̄δδ + α̂ααi(Θ1) and Σ̃−1

εε ε̂εεit(Θ1). In what follows,

we assume that the second stage structural estimation involves estimating a binary response
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model as in our discussion on identification of discrete response models. For binary response

model we have

HitΘ2(Θ1,Θ2) = yit
φ(X′

itΘ2)Xit

Φ(X′
itΘ2)

− (1− yit)
φ(X′

itΘ2)Xit

1− Φ(X′
itΘ2)

= qitλitXit, (C-11)

where Xit = {X ′
it, (Z̄

′
iδ̄δδ+ α̂ααi(Θ1))

′, (Σ̃−1
εε ε̂εεit(Θ1))

′}′, qit = 2yit− 1, and λit =
φ(qitX

′
itΘ2)

Φ(qitX′
itΘ2)

. Hence

we have

∂HitΘ2(Θ1,Θ2)

∂Θ′
1

= qit

[
λit

(
− qit

∂X′
it

∂Θ′
1

Θ2Xit +
∂Xit

∂Θ′
1

)
− λ2itXitqit

∂X′
it

∂Θ′
1

Θ2

]
, (C-12)

where

∂Xit

∂Θ′
1

=




∂Xit
∂δδδ′

∂Xit
∂vech(Λαα)′

∂Xit
∂vech(Σεε)′

∂(Z̄
′
iδ̄δδ+α̂ααi)
∂δδδ′

∂(Z̄
′
iδ̄δδ+α̂ααi)

∂vech(Λαα)′
∂(Z̄

′
iδ̄δδ+α̂ααi)

∂vech(Σεε)′

∂Σ̃−1
εε ε̂εεit
∂δδδ′

∂Σ̃−1
εε ε̂εεit

∂vech(Λαα)′
∂Σ̃−1

εε ε̂εεit
∂vech(Σεε)′


 .

Since Xit above is not a function of Θ1,
∂Xit
∂Θ′

1
= 0X , where 0X is a null matrix with row

dimension that of column vector Xit and column dimension that of column vector Θ1. In

subsection (C.1) we derive the derivative of Z̄
′
iδ̄δδ + α̂ααi(Θ1) and Σ̃−1

εε ε̂εεit(Θ1) with respect to

Θ1 = {δδδ′, vech(Λαα)
′, vech(Σεε)

′}′. We show that

∂(Z̄
′
iδ̄δδ + α̂ααi)

∂δδδ′
= O

′
Zi −

1

U2
dr

T∑

t=1

[
UnrU

′
nr − UdrFdr

]
Σ−1
εε Z

′
it,

∂Σ̃−1
εε ε̂εεit
∂δδδ′

= −Σ̃−1
εε Z

′
it +

Σ̃−1
εε

U2
dr

T∑

t=1

[
UnrU

′
nr − UdrFdr

]
Σ−1
εε Z

′
it,

∂(Z̄
′
iδ̄δδ + α̂ααi)

∂vech(Λαα)′
=

1

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα)

′L′
m,

∂Σ̃−1
εε ε̂εεit

∂vech(Λαα)′
=

−Σ̃−1
εε

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα)

′L′
m,

∂(Z̄
′
iδ̄δδ + α̂ααi)

∂vech(Σεε)′
=

1

2U2
dr

T∑

t=1

[
Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)

− Unrvec(−Unrr
′
it − ritU

′
nr + Fdr)

′
]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m,

and

∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
=

(UnrΣ
−1
εε ⊗ Im)

2Udr
vec((dg(Σεε))

−1/2)′L′
m+

[
(Unr ⊗Σ′

ε)
′

Udr

− Σ̃−1
εε

2(Udr)2

T∑

t=1

(
Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)− Unrvec(−Unrr

′
it − ritU

′
nr + Fdr)

′
)]

(Σ−1
εε ⊗ Σ−1

εε )
′L′

m,
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where

Unr =

∫
Imααα exp(−1

2
r(Θ1,ααα))φ(ααα)dααα, Fnr =

∫
Imαααvec(αααααα

′)′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα

Udr =

∫
exp(−1

2
r(Θ1,ααα))φ(ααα)dααα, Fdr =

∫
αααααα′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα,

rit = xit − Ziδδδ,

OZi = diag((0′z , z̄
′
i)
′, . . . , (0′z , z̄

′
i)
′), and 0′z is a vector of zeros of having the dimension of zit,

which has been defined in Section 2 in the main text, and Lm is an elimination matrix.

Now, while numerical integration technique, at the estimated value Θ̂1, was employed for the

computation of Ûnr and Ûdr to obtain ˆ̂αααi for estimating the structural parameters of interest,

in order to obtain the error adjusted standard errors of the structural estimates, F̂nr and F̂dr

will also have to be numerically computed at the estimated reduced form parameters Θ̂1.

In Lemma 1 we showed that Ûnr(Θ̂1) and Ûdr(Θ̂1) converge almost surely to Unr(Θ
∗
1),

Udr(Θ
∗
1). By application of Lemma 1 it can be also shown that F̂nr(Θ̂1), and F̂dr(Θ̂1) converge

almost surely to Fnr(Θ
∗
1), and Fdr(Θ

∗
1) respectively. This would imply that Hi(T )Θ2Θ1

(Θ̂1, Θ̂2)

=
∑T

t=1
∂HitΘ2

(Θ̂1,Θ̂2)

∂Θ′
1

converge almost surly to
∑T

t=1
∂HitΘ2

(Θ∗
1,Θ

∗
2)

∂Θ′
1

=
∑T

t=1HitΘ2Θ1(Θ
∗
1,Θ

∗
2) =

Hi(T )Θ2Θ1
(Θ∗

1,Θ
∗
2) and by the weak LLN 1

NHi(T )Θ2Θ1
(Θ̂1, Θ̂2) will converge in probability to

E(Hi(T )Θ2Θ1
(Θ∗

1,Θ
∗
2)) = HΘ2Θ1

C.1 Derivative of Z̄
′
iδ̄δδ + α̂ααi and Σ̃−1

εε ε̂εεit with respect to Θ1

First consider the derivative of Z̄
′
iδ̄δδ + α̂ααi with respect to vech(Λαα). We have

∂(Z̄
′
iδ̄δδ + α̂ααi)

∂vech(Λαα)′
=

∂α̂ααi

∂vech(Λαα)′

=
∂

∂vech(Λαα)′

[∫
ααα exp(−1

2r(Θ1,ααα))φ(ααα)dααα∫
exp(−1

2r(Θ1,ααα))φ(ααα)dααα

]
=

∂

∂vech(Λαα)′

[∫
fnr(.,ααα)φ(ααα)dααα∫
fdr(.,ααα)φ(ααα)dααα

]

=
[
∫
fnr(.,ααα)

∂φ(ααα)dααα
∂vech(Λαα)′

][
∫
fdr(.,ααα)φ(ααα)dααα]− [

∫
fnr(.,ααα)φ(ααα)dααα][

∫
fdr(.,ααα)

∂φ(ααα)dααα
∂vech(Λαα)′

]

[
∫
fdr(.,ααα)φ(ααα)dααα]2

(C-13)
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Now, since φ(ααα) = 1
(2π)m/2|Λαα|1/2 exp(−

1
2ααα

′Λ−1
ααααα) we have

∂φ(ααα)dααα

∂vech(Λαα)′
=

− exp(−1
2ααα

′Λ−1
ααααα)

2(2π)m/2|Λαα|3/2
∂|Λαα|

∂vech(Λαα)′
+

exp(−1
2ααα

′Λ−1
ααααα)

(2π)m/2|Λαα|1/2
∂(−1

2ααα
′Λ−1

ααααα)

∂vech(Λαα)′

= −1

2
φ(ααα)

(
1

|Λαα|
∂|Λαα|

∂vech(Λαα)′
+

∂(ααα′Λ−1
ααααα)

∂vech(Λαα)′

)

= −1

2
φ(ααα)

(
vec(Λ−1

αα)
′ + vec(−(Λ−1

αα)
′αααααα′(Λ−1

αα)
′)′
)
∂vec(d(Λαα))

∂vech(Λαα)′

= −1

2
φ(ααα)

(
vec(Λ−1

αα)
′ + vec(−(Λ−1

αα)
′αααααα′(Λ−1

αα)
′)′
)
L′
m, (C-14)

where L′
m is an elimination matrix. Given (C-14), (C-13) can be simplified as

∂(Z̄
′
iδ̄δδ + α̂ααi)

∂vech(Λαα)′
= − 1

2U2
dr

[
[Unrvec(Λ

−1
αα)

′ − Fnr(Λ
−1
αα ⊗ Λ−1

αα)
′]L′

mUdr

− Unr[Udrvec(Λ
−1
αα)

′ − Fdr(Λ
−1
αα ⊗ Λ−1

αα)
′]L′

m

]

=
1

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα)

′L′
m, (C-15)

where

Unr =

∫
Imααα exp(−1

2
r(Θ1,ααα))φ(ααα)dααα, Fnr =

∫
Imαααvec(αααααα

′)′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα

Udr =

∫
exp(−1

2
r(Θ1,ααα))φ(ααα)dααα, Fdr =

∫
αααααα′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα. (C-16)

Also, from (C-15) we gather that

∂Σ̃−1
εε ε̂εεit

∂vech(Λαα)′
=

−∂Σ̃−1
εε α̂ααi

∂vech(Λαα)′
=

−Σ̃−1
εε

2U2
dr

[UdrFnr − Unrvec(Fdr)
′](Λ−1

αα ⊗ Λ−1
αα)

′L′
m. (C-17)

Now consider the derivative of Z̄
′
iδ̄δδ + α̂ααi with respect to vech(Σεε). We have

∂(Z̄
′
iδ̄δδ + α̂ααi)

∂vech(Σεε)′
=

∂α̂ααi

∂vech(Σεε)′
=

∂

∂vech(Σεε)′

[∫
ααα exp(−1

2

∑T
t=1 εεε

′
itΣ

−1
εε εεεit)φ(ααα)dααα∫

exp(−1
2

∑T
t=1 εεε

′
itΣ

−1
εε εεεit)φ(ααα)dααα

]

= −1

2

[∫ αααψ(ααα)∂
∑T

t=1 εεε
′
itΣ

−1
εε εεεit

∂vech(Σεε)′
dααα

∫
ψ(ααα)dααα−

∫
αααψ(ααα)dααα

∫
ψ(ααα)

∂
∑T

t=1 εεε
′
itΣ

−1
εε εεεit

∂vech(Σεε)′
dααα

(
∫
ψ(ααα)dααα)2

]
,

where ψ(ααα) = exp(−1
2

∑T
t=1 εεε

′
itΣ

−1
εε εεεit)φ(ααα). With

∂
∑T

t=1 εεε
′
itΣ

−1
εε εεεit

∂vech(Σεε)′
=

∑T
t=1 vec(−(Σ−1

εε )
′εεεitεεε′it(Σ

−1
εε )

′)′L′
m
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the above can be written as

∂ᾱααi

∂vech(Σεε)′
=

1

2(
∫
ψ(ααα)dααα)2

T∑

t=1

[ ∫
αααψ(ααα)vec((Σ−1

εε )′εεεitεεε
′
it(Σ

−1
εε )

′)′L′
mdααα

∫
ψ(ααα)dααα

−
∫
ψ(ααα)vec((Σ−1

εε )′εεεitεεε
′
it(Σ

−1
εε )

′)′L′
mdααα

∫
αααψ(ααα)dααα

]

=
1

2U2
dr

T∑

t=1

[ ∫
αααψ(ααα)vec(εεεitεεε

′
it)

′(Σ−1
εε ⊗ Σ−1

εε )
′L′

mdαααUdr

− Unr

∫
ψ(ααα)vec(εεεitεεε

′
it)

′(Σ−1
εε ⊗ Σ−1

εε )
′L′

mdααα

]

=
1

2U2
dr

T∑

t=1

[ ∫
(Udrαααvec(εεεitεεε

′
it)

′ − Unrvec(εεεitεεε
′
it)

′)ψ(ααα)dααα

]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m

(C-18)

To simply (C-18) further, write εεεit as εεεit = xit − Ziδδδ − ααα = rit − ααα, where rit = xit − Ziδδδ.

Then εεεitεεε
′
it = ritr

′
it −αααr′it − ritααα

′ +αααααα′, and (C-18) after some simplification can be written

as

∂α̂ααi

∂vech(Σεε)′
=

1

2U2
dr

T∑

t=1

[
Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)

− Unrvec(−Unrr
′
it − ritU

′
nr + Fdr)

′
]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m. (C-19)

The expressions in the parenthesis in (C-19) are
∫
Imαααvec(αααr

′
it)

′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα =

∫
Imr′it ⊗ (αααααα′) exp(−1

2
r(Θ1,ααα))φ(ααα)dααα = r′it ⊗ Fdr

∫
Imαααvec(ritααα

′)′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα =

∫
Im(αααααα′)⊗ r′it exp(−

1

2
r(Θ1,ααα))φ(ααα)dααα = Fdr ⊗ r′it

∫
vec(αααr′it)

′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα = vec(ααα exp(−1

2
r(Θ1,ααα))φ(ααα)dαααr

′
it)

′ = vec(Unrr
′
it)

′

∫
vec(ritααα

′)′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα = vec(ritααα

′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα)

′ = vec(ritU
′
nr)

′,

where Unr, Udr, Fnr, and Fdr have been defined in (C-16).

Let us now consider the derivative ∂Σ̃−1
εε α̂ααi

∂vech(Σεε)′
= ∂(ΣεΣ

−1
εε α̂ααi)

∂vech(Σεε)′
. The total differential of

ΣεΣ
−1
εε α̂ααi is given by:

d(ΣεΣ
−1
εε α̂ααi) = d(Σε)Σ

−1
εε α̂ααi +Σεd(Σ

−1
εε )α̂ααi +ΣεΣ

−1
εε d(α̂ααi). (C-20)

Now, as defined earlier, Σε = (dg(Σεε))
1/2, hence

∂(Σε)Σ
−1
εε α̂ααi

∂vech(Σεε)′
=

1

2
(α̂αα′

iΣ
−1
εε ⊗ Im)vec((dg(Σεε))

−1/2)
∂vec(Σεε)

∂vech(Σεε)′

=
1

2
(α̂αα′

iΣ
−1
εε ⊗ Im)vec((dg(Σεε))

−1/2)′L′
m. (C-21)
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Now, consider the second term of the differential given in (C-20). It can be shown that

Σε∂(Σ
−1
εε )α̂ααi

∂vech(Σεε)′
= −(α̂ααi ⊗ Σ′

ε)
′(Σ−1

εε ⊗ Σ−1
εε )

∂vec(Σεε)

∂vech(Σεε)′
= −(α̂ααi ⊗ Σ′

ε)
′(Σ−1

εε ⊗ Σ−1
εε )L

′
m. (C-22)

Finally, consider the third term in the total differential in (C-20). From (C-19) we can

conclude that

ΣεΣ
−1
εε ∂(α̂ααi)

∂vech(Σεε)′
=

ΣεΣ
−1
εε

2U2
dr

T∑

t=1

[
Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)

− Unrvec(−Unrr
′
it − ritU

′
nr + Fdr)

′
]
(Σ−1

εε ⊗ Σ−1
εε )

′L′
m. (C-23)

Combining (C-21), (C-22), and (C-23) we obtain

∂Σ̃−1
εε ε̂εεit

∂vech(Σεε)′
=

(UnrΣ
−1
εε ⊗ Im)

2Udr
vec((dg(Σεε))

−1/2)′L′
m+

[
(Unr ⊗Σ′

ε)
′

Udr

− ΣεΣ
−1
εε

2(Udr)2

T∑

t=1

(
Udr(−r′it ⊗ Fdr − Fdr ⊗ r′it + Fnr)− Unrvec(−Unrr

′
it − ritU

′
nr +Fdr)

′
)]

(Σ−1
εε ⊗ Σ−1

εε )
′L′

m.

(C-24)

We note here that ∂α̂ααi
∂vech(Λαα)′

and ∂α̂ααi
∂vech(Σεε)′

, respectively, for an individual i are same for all

time periods.

Finally, let us now consider the derivative of Z̄
′
δ̄δδ + α̂ααi and Σ̃−1

εε ε̂εεit with respect to δδδ′. We

have

∂(Z̄
′
δ̄δδ + α̂ααi)

∂δδδ′
=
∂Z̄

′
iδ̄δδ

∂δδδ′
+
∂α̂ααi

∂δδδ′
= O

′
Zi +

∂

∂δδδ′

[∫
ααα exp(−1

2

∑T
t=1 εεε

′
itΣ

−1
εε εεεit)φ(ααα)dααα∫

exp(−1
2

∑T
t=1 εεε

′
itΣ

−1
εε εεεit)φ(ααα)dααα

]

= O
′
Zi −

1

(
∫
exp(.)φ(ααα)dααα)2

T∑

t=1

[ ∫
ααα exp(.)εεε′itΣ

−1
εε Z

′
itφ(ααα)dααα

∫
exp(.)φ(ααα)dααα

−
∫
ααα exp(.)φ(ααα)dααα

∫
exp(.)εεε′itΣ

−1
εε Z

′
itφ(ααα)dααα

]
, (C-25)

where OZi = diag((0′z , z̄
′
i)
′, . . . , (0′z , z̄

′
i)
′), and 0′z is a vector of zeros of having the dimension

of zit, which has been defined in Section 2 in the main text. To derive the above result in

(C-25) we used the fact that

∂(εεε′itΣ
−1
εε εεεit)

∂δδδ′
= 2εεε′itΣ

−1
εε

∂(εεεit)

∂δδδ′
= −2εεε′itΣ

−1
εε Z

′
it.

With some of the results stated above it can be shown that ∂α̂ααi
∂δδδ′ = 1

U2
dr

∑T
t=1

[
UnrU

′
nr −

UdrFdr

]
Σ−1
εε Z

′
it. Hence we have

∂(Z̄
′
δ̄δδ + α̂ααi)

∂δδδ′
= O

′
Zi −

1

U2
dr

T∑

t=1

[
UnrU

′
nr − UdrFdr

]
Σ−1
εε Z

′
it, (C-26)
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and

∂Σ̃−1
εε ε̂εεit
∂δδδ′

=
∂Σ̃−1

εε (xit − Z
′
itδδδ)

∂δδδ′
− ∂Σ̃−1

εε α̂ααi

∂δδδ′
= −Σ̃−1

εε Z
′
it +

Σ̃−1
εε

U2
dr

T∑

t=1

[
UnrU

′
nr − UdrFdr

]
Σ−1
εε Z

′
it.

(C-27)

From (C-26) and (C-27) we can see that while ∂(Z̄
′
δ̄δδ+α̂ααi)
∂δδδ′ for an individual i remains the same

for all time periods, ∂Σ̃−1
εε ε̂εεit
∂δδδ′ varies with time.

C.2 Hypothesis Testing of Average Partial Effects

In section 2.3 we showed how to compute the average partial effect (APE) of a variable w

belonging to X ′. To test various hypothesis in order to draw inferences about the APE’s we

need to compute the standard errors of their estimates. From (2.24) and (2.25) in the main

text we know that estimated APE of w on the probability of yit = 1 is given by

∂P̂r(yit = 1)

∂w
=

1
∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

ϕ̂wφ̂(X̄
′
itΘ̂2),

where X̄it = {X̄ ′, (Z̄′
i
ˆ̄δδδ+ˆ̂αααi)

′, ( ˆ̃Σ−1
εε

ˆ̂εεεit)
′}′ and Θ2 = {ϕϕϕ′, vec(Σ̄θα)

′, vec(Σ̃ζε)
′}′. Since each of the

ϕ̂wφ̂(X̄
′
itΘ̂2) is a function of Θ̂2 the variance of ∂P̂r(yit=1)

∂w will be a function of the variance of

the estimate of Θ2. Now, we know that by the linear approximation approach (delta method),

the asymptotic covariance matrix of ∂P̂r(yit=1)
∂w is given by

Asy. Var[
∂P̂r(yit = 1)

∂w
] =

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂ϕ̂wφ̂(X̄
′
itΘ̂2)

∂Θ̂′
2

]
V ∗
2

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂ϕ̂wφ̂(X̄
′
itΘ̂2)

∂Θ̂′
2

]′
,

(C-28)

where V ∗
2 is the second stage error adjusted covariance matrix, shown above, of ϕ̂ϕϕ. The RHS

of (C-28) turns out to be

[
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

φ̂(X̄it)[ew − (Θ̂′
2X̄it)ϕ̂wX̄

′
it]

]
V ∗
2

[
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

φ̂(X̄it)[ew − (Θ̂′
2X̄it)ϕ̂wX̄

′
it]

]′
,

(C-29)

where and ew is a row vector having the dimension of Θ′
2 and with 1 at the position of ϕw in

Θ2 and zeros elsewhere. The estimated asymptotic covariance matrix of the APE of all the

continuous variables in X f on the probability of being financially constrained can be obtained

as above.
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If w is a dummy variable then from (2.26) we know that the estimated APE of w is given

by

∆w Pr(yit = 1) =
1

∑N
i=1 Ti

N∑

i=1

Ti∑

t=1

Φ̂(X̄−w, w = 1, ˆ̂αi, ˆ̂εεεit)− Φ̂(X̄−w, w = 0, ˆ̂αi, ˆ̂εεεit)

=
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∆wΦ̂it()

To obtain the variance of the above, again by the delta method we have

Asy. Var∆w Pr(fit = 1) =

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂∆Φ̂it(.)

∂Θ′
2

]′
V ∗
2

[
1∑N

i=1 Ti

N∑

i=1

Ti∑

t=1

∂∆Φ̂it(.)

∂Θ′
2

]
,

(C-30)

where

∂∆Φ̂it(.)

∂Θ2
=
∂Φ̂it(w = 1)

∂Θ2
− ∂Φ̂it(w = 0)

∂Θ2
= φit(w = 1)

[
X̄it−w

1

]
− φ̂it(w = 0)

[
X̄it−w

0

]
.

Appendix D: Note on Numerical Integration

In order to obtain the structural estimates we have to compute the expected a posteriori

values of the time invariant individual effects given by:

α̂αα(X,Z,Θ1) =

∫
Ca exp(−1

2

∑T
t=1(xt − Z

′
tδδδ −ααα)′Σ−1

εε (xt − Z
′
tδδδ − Ca))φ(a)da

∫
exp(−1

2

∑T
t=1(xt − Z′

tδδδ −Ca)′Σ−1
εε (xt − Z′

tδδδ − Ca))φ(a)da

=

∫
C exp(−1

2r(Θ1, a))φ(a)da∫
exp(−1

2r(Θ1, a))φ(a)da
=
Unr

Udr
, (D-1)

where ααα = Ca, CC ′ being the Cholesky decomposition of the (m×m) covariance matrix Λαα,

so that dααα = |C|da = |Λαα|1/2da, and r(Θ1, a) =
∑T

t=1(xt − Z
′
tδδδ − Ca)′Σ−1

εε (xt − Z
′
tδδδ − Ca).

And to obtain error adjusted covariance matrix in addition to Unr and Udr we have to estimate

Fnr and Fdr given by

Fnr =

∫
Imαααvec(αααααα

′)′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα and Fdr =

∫
αααααα′ exp(−1

2
r(Θ1,ααα))φ(ααα)dααα

(D-2)

respectively.

Here we discuss how to compute Unr, Udr, Fnr, and Fdr. Take, for example, Unr, which

can be written as

∫
Ca exp(−1

2
r(Θ1, a))φ(a)da =

∫
Ca exp(−1

2
r(Θ1, a))e

− a
′
a

2 da =

∫
f(a)e−

a
′
a

2 da,

33



where
∫
f(a)e−

a
′
a

2 da =
∫∞
−∞ . . .

∫∞
−∞ f(a)e−

a
′
a

2 da1 . . . dam.

A general treatment for numerically computing multidimensional integrals can be found

in Krommer and Ueberhuber (1994). More recently Cools and Haegemans (1994) have de-

veloped integration rules for multidimensional integrals over infinite integration regions with

a Gaussian weight function to evaluate integrals of the type stated above, and Genz and

Keister (1996) have provided more efficient rules of the same. The integration rules consist

of constructing N weights, wj , and points aj , aj ∈ R
m, such that Q(f),

Q(f) =

N∑

j=1

wjf(aj), (D-3)

approximate the integral
∫∞
−∞ . . .

∫∞
−∞ f(a)e−

a
′
a

2 da1 . . . dam. Fortran routines for computing

Q(f), developed in Genz and Keister (1996), can be obtained from Alan Genz’s webpage.
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