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1. Introduction 

Most of real-world problems have to deal with multi-output multi-input process. This is 
especially observed in the public sector where policy makers usually face up to 
multidimensional decisions and budget trade-offs. In the field of production frontier analysis, a 
number of non-parametric and parametric methods have been proposed to build best practice 
frontiers and to measure technical efficiencies across decision making units (DMU). In order to 
shed light on the properties and on the potential advantages and disadvantages of competing 
techniques and methodologies to conduct a same task, Monte-Carlo experimentation appears as 
the statistical referee often selected.  

Bowlin et al. (1985), Banker et al. (1987), Gong and Sickles (1992), Banker et al. (1993) and 
Thanassoulis (1993) initiated the tradition comparing non parametric, mainly DEA (Data 
Envelopment Analysis) vs. parametric frontier performances. In more recent years several 
Monte-Carlo experiment papers concerned DEA issues: Pedraja-Chaparro et al. (1997) study 
the benefits of weights restrictions, Ruggiero (1998) and Yu (1998) analyze the introduction of 
non-discretionary inputs, Zhang and Bartels (1998) investigate the effect of sample size on 
mean efficiency scores, Holland and Lee (2002) measure the influence of random noise and 
Steinmann and Simar (2003) assess the comparability of estimated inter-group mean 
efficiencies. These are only a few examples, the complete list of Monte-Carlo works and 
experimental designs also includes sensitivity analysis, random noise and inefficiency terms 
distributions, functional forms, number of replications, and so on.   

Our goal is not to present here a complete survey of these studies, nor of their main conclusions, 
but to make the observation that in our knowledge without exception these studies were 
performed in a single output multi-input framework and most used a Cobb-Douglas technology 
to generate the data. Nevertheless, in a seminal paper, Lovell et al. (1994) introduced a 
methodology that allows the estimation of a parametric production function in a multi-output 
multi-input setting. For this purpose, they used an output distance function and a translog 
technology.  

However, if authors performing Monte-Carlo experiments neglected parametric distance 
functions and, more generally, translog technologies in generating testable production data, the 
reason must be found in the difficulties encountered to impose behavioral regularity conditions, 
mainly monotonicity and convexity constrains on them. In a recent published paper, O’Donnell 
and Coelli (2005) addressed this issue and propose a Bayesian approach to impose curvature on 
distance functions in empirical studies. The aim of this paper is close related with them. We 
illustrate how reliable data for Monte-Carlo experiments can be generated using parametric 
distance functions. Using a flexible translog technology we derive the sufficient conditions in 
order to generate data in the case of a simple two-input two-output production function, which 
maybe straightforward generalized to higher dimensionality problems. Moreover, we identify a 
valid range of parameters values satisfying regularity conditions and a rule of thumb, a data 
treatment recommendation, to be applied in empirical estimations.  

The sections of the paper are organized as follows. Section 2 presents the main properties and 
characteristics of parametric output distance functions. In Section 3 we derive the sufficient 
conditions for the monotonicity and convexity properties to be fulfil and Section 4 illustrates 
how these conditions apply in the two-output two-input setting. Section 5 presents the data 
generation process, step by step and the last section points out the main conclusions and the 
directions for further research. 

 

2. The translog output distance function 

Defining a vector of inputs x = (x1, …, xK) ∈ ℜK+ and a vector of outputs y = (y1, …, yM) ∈ ℜM+ 
the feasible multi-input multi-output production technology can be defined using de output 
possibility set P(x) which can be produced using the input vector x: 
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P(x) = {y: x can produce y) that is assumed to satisfy the set of axioms depicted in Färe and 
Primont (1995). This technology can also be defined as the output distance function proposed 
by Shephard (1970): 

( ) ( ) ( ){ }xPy,x,:infy,xDO ∈>= θθθ 0  

If ( ) 1≤y,xDO  then ( )y,x belongs to the production set P(x). In addition ( ) 1=y,xDO  if y is 
located on the outer boundary of the output possibility set. Regularity conditions assume that 
P(x) is non-decreasing, linearly homogeneous and convex in outputs, and non-decreasing and 
quasi-convex in inputs. 

In order to estimate the distance function in a parametric setting a translog functional form is 
assumed. According with Coelli and Perelman (1999) this specification fulfils a set of desirable 
characteristics: flexible, easy to derive and allowing the imposition of homogeneity. The 
translog distance function specification herein adopted for the case of K inputs and M outputs 
is:  
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where i denotes the ith unit (DMU) in the sample. In order to obtain the production frontier 
surface we set ( ) 1=y,xDO  which implies ( ) 0=y,xDln O . The parameters of the above 
distance function must satisfy a number of restrictions. Symmetry requires: 

nmmn αα = ;  m, n = 1, 2,…, M, and 

lkkl ββ = ;  k, l = 1, 2,…, K. 

Moreover, linear homogeneity of degree + 1 in outputs can be imposed, in order to fulfil Euler’s 
Theorem, in the following way:  
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This latter restriction indicates that distances with respect to the boundary of the production set 
are measured by radial expansions. Following Shephard (1970) homogeneity in outputs implies: 

)y,x(D)y,x(D OO ωω = , for any ω > 0, 

and according with Lovell et al. (1994) normalizing the output distance function by one of the 
outputs is equivalent to set My1=ω  imposing homogeneity of degree +1, as follows: 

MOMO y)y,x(D)yy,x(D = . 

For unit i, we can rewrite the above expression as: 

( ) ),,,yy,x(TLy)y,x(Dln MiiiMiOi δβα= ,       i = 1, 2,…,N, 
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where 
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And rearranging terms the function above can be rewritten as follows: 

( ) ( )yxDyyxTLy OiMiiiMi ,ln),,,,(ln −=− δβα ,    i = 1, 2,…, N,  

where ( )y,xDln Oi−  corresponds to the radial distance function from the boundary. Hence we 
can set ( )y,xDlnu Oi−=  and add up a term iv  capturing for noise to obtain the Battese and 
Coelli (1988) version of the traditional stochastic frontier model proposed by Aigner, Lovell 
and Schmidt (1977) and Meeusen and van den Broeck (1977): 

( ) iMiiiMi ),,,yy,x(TLyln εδβα +=− ,    iii uv +=ε ,  

where u = ( )y,xDln Oi− , the distance to the boundary set, is a negative random term assumed 

to be independently distributed as truncations at zero of the ( )2, uN σϕ  distribution, and the iv  
term is assumed to be a two-sided random (stochastic) disturbance designated to account for 
statistical noise and distributed iid ( )2,0 vN σ . Both terms are independently distributed 0=uvσ . 

 

3. Regularity conditions in a well-behaved output distance function: a review 

One serious drawback in applied production studies is that most of times the true technology is 
completely unknown, especially in service activities like education or health. However, we learn 
from microeconomic foundations that a well-behaved production function must fulfil a number 
of smooth properties. Färe and Primont (1995) provide the general regularity properties for 
output distance functions: monotonicity (non-decreasing in inputs), convexity and homogeneity 
of degree +1 in outputs, and non-increasing and quasi-convexity in inputs1. These technological 
constraints rely on economics theory but real circumstances or a legal framework could relax or 
even do more restrictive these assumptions. Regardless whether or not these properties are 
always true in real production situations, they impose desirable assumptions for experimental 
data generation design. 

Following O’Donnell and Coelli (2005), monotonicity and curvature conditions involve 
constraints on distance function partial derivatives on equation (1) with respect to inputs: 
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and with respect to outputs: 
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Monotonicity implies two conditions on distance function partial elasticities. For D to be non-
increasing in x it is required that: 

                                                 
1 O’Donnell and Coelli (2005, footnote 1) contribute to clarify a typographical error in Färe and Primont 
(1995).   
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while for D to be non-decreasing in y it is required that:  
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For quasi-convexity in x, it is necessary to evaluate the corresponding bordered Hessian matrix 
on inputs: 
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with  δkl = 1 if p = j and 0 otherwise. For D to be quasi-convex on x over the nonnegative 
orthant (the n-dimensional analogue of the nonnegative quadrant) a sufficient condition implies 
that all principal minors of F must be negative. 

Finally, for convexity in y we evaluate the Hessian matrix on outputs: 
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According with Lau (1978) the function D will be convex in y over the nonnegative orthant if 
and only if H is positive semi-definite. Thus, D will be convex in y if and only if all the 
principal minors of H are non-negative.  

 

4. Sufficient conditions to generate regular data in a two-input two-output setting 

In this section we are concerned with the generation of data in the simplest two-input two-
output case, for which the output distance function can be defined as follows: 
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For the sake of simplicity we will assume separability between inputs and outputs, restricting all 
γ parameters to be zero2. Moreover, homogeneity of degree + 1 requires: 121 =+αα , 

021122211 =+++ αααα , while symmetry 2112 αα =  and 2112 ββ = .         

Then the monotonicity conditions on inputs can be written as follows:  
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and the monoticity conditions on outputs: 
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In order to verify 01 ≤s  and 02 ≤s  a sufficient condition is to impose the negativity of all 
inputs parameters ( )0,,,, 12221121 <βββββ . Moreover, input values distribution must be 
restricted to be 1≥ix ( )0ln ≥ix , where i = 1, 2 denotes the inputs.  

Monotonicity in outputs must be imposed to fulfil convexity at the same time. Convexity on 
outputs over the nonnegative orthant requires that the Hessian matrix in outputs to be positive 
semi-definite. The two-output Hessian matrix and its components are as follows: 
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Accordingly with O’Donnell and Coelli (2005, p. 501), in the case of 2 outputs the Hessian 
matrix will be positive semidefinite if and only if ( )25.02111 ≤≥ rrα . To fulfil with these 
conditions we impose3 25.011 =α  and, given the homogeneity condition on outputs, 

                                                 
2 This restriction can be easily relaxed imposing new sufficient conditions between inputs and outputs 
values. 
3 There exist infinite possibilities to impose curvature conditions on outputs through the parameters. We 
only adopt one of these possibilities at start point in order to illustrate how to perform the data generation 
process.  
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25.022 =α  and 25.012 −=α . Once outputs interactions parameters are imposed, we restrict 
0; 21 ≥rr  dealing with the ratio of outputs and the value of 1α  and 2α : 

121 =+αα , 01 ≥α , 02 ≥α , 25.021 ≤rr  

0ln25.0ln25.0 2111 ≥−+= yyr α  ⇒ ( ) 0lnln25.0 121 ≥−− yyα , 

0ln25.0ln25.0 1222 ≥−+= yyr α  ⇒ ( ) 0lnln25.0 122 ≥−+ yyα . 

These conditions impose on one hand that 1α  and 2α  must belong to the interval [0; 1]. 
Otherwise the monotonicity condition is broken. Therefore, in order to fulfil monotonicity and 
convexity the difference between the outputs logarithms is determined by 1α  and 2α . Whatever 

1α  and 2α  values, the imposition of 25.011 =α  forces up that the absolute difference between 
the logarithms of outputs to be 4 as maximum. To obtain the plausible output interval it is 
required to assign values for 1α  and 2α  and to calculate the difference of the logarithms of 
outputs as it shown above. We can illustrate this result with several examples: 

1. If 50.01 =α  and 50.02 =α , then ( ) [ ]2;2lnln 12 −∈− yy . 

2. If 00.011 =α  and 00.02 =α , then ( ) [ ]4;0lnln 12 ∈− yy . 

3. If 00.01 =α  and 00.12 =α , then ( ) [ ]0;4lnln 12 −∈− yy . 

4. If 25.01 =α  and 75.02 =α  then ( ) [ ]1;3lnln 12 −∈− yy . 

This constraint is meaningful for data generation because this rule imposes that the ratio of 
outputs must be exogenously defined as ( ) [ ]bayy ;lnln 12 ∈−  being a the lowest value and b 
the upper one.  

Moreover, it is possible to proceed in the other way around. To generate in a first step plausible 
exogenous output ratio in logarithms ( )12 ylnyln −  and in the second step derive the range of 
valid parameters. For example a [–1.5; 1.5] ratio interval implies that 1α  and 2α  could take any 
value among 375.01 ≥α  and 625.02 ≤α , given 121 =+αα . At the limit, ( ) 0ln 12 =yy  
corresponding to equal output values allows choosing any non-negative 1α  and 2α  parameter 
values, given 121 =+αα .  

Finally, for quasi-convexity in inputs, we must calculate the input bordered Hessian of equation 
(3): 
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For D to be quasi-convex in x over the non-negative orthant a sufficient condition is that all 
principal minors of F were negative. This can be done restricting 0; 21 ≤ss , which can be 
satisfied imposing all beta parameters to be negative. Therefore, the first principal minor 

2
11 fF −=  will be by construction always negative. And the second principal minor must be 

negative as well: 
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which is equivalent to: 
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Operating this expression and multiplying by -1 to change the sign of the inequality, and for 
better understanding, we obtain: 

02 2112
2
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2
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122 >−−+− ssssssss βββ  

In this expression all terms with a negative coefficient as well as the 21122 ssβ−  term are 
positive. Therefore it is easy to show that a sufficient condition is that all inputs logarithms 
values were greater than zero (input values greater or equal to one). In such a case 

222 β<s and 111 β<s , so positive values always compensate negative ones, and second 
principal minor will satisfy the negativity constraint. 

 

5. Steps in experimental design to generate regular data 

To carry out the experimental design, and once we define 25.011 =α  the first step is the 
selection of the meaningful distribution ratio of outputs 12 yy , and its logarithm. As we have 
pointed out before this exogenous ratio must fulfils that ( ) ( ) [ ]bayyyy ;lnlnln 1212 ∈−= , 
where 4≤− ba . An extreme difference of 4 will impose the range of valid 1α  and 2α  values. 
In second step, a distribution of distance function values has to be defined into the interval 
[ ]∞;1 . Efficient units will receive 1=D  ( )0ln =D  and the remaining will receive a value 
according with a distributional assumption. Third step consist in generating a distribution for the 
random noise v, for example through a ( )2,0 vN σ  distribution. Fourth, we generate an input 
distribution with the only restriction that 1≥ix ( )0ln ≥ix , where i = 1, 2 denotes the inputs. 
Moreover all parameters multiplying inputs must be negative. Now if we choose as numeraire 

1ln y we can calculate 1ln y−  through: 
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Where the value of 0α  must be imposed with the restriction that 0ln 01 <−− αy , in order to 
avoid negative production values. Note that in the expression above 5.011 =α  in order to fulfil 
the curvature condition on outputs. Finally, once 1ln y−  is calculated it is straightforward to 
compute 1yln  and 2yln  and data generation process will be concluded4.  

Evolving from this well-behaved production function we can extract the required number of 
samples to perform Monte-Carlo experimentation in a multi-input multi-output setting. The 
proposed methodology can be straightforward generalized to more dimensions. For example, in 
the case of three outputs it will be necessary to exogenously generate two ratios of outputs, say 
( )12ln yy and ( )13ln yy , analogously to the two-input two-output case discussed here, that 

will impose the range of output parameters values, and so on.  

 

Conclusions and further research 

In the field of frontier analysis, several studies compared the performances of non-parametric 
and parametric approaches appealing to Monte-Carlo experiments but always used a single 
output and most of them Cobb-Douglas technology for data generation. The main explanation 
why authors did not considered more flexible technologies, e.g. translog, and multi-output 
multi-input distance functions must be found among the difficulties encountered to generate 
data satisfying regularity conditions, like monoticity and convexity. In a recent paper, 
O’Donnell and Coelli (2005) addressed these regularity issues and proposed a Bayesian 
approach to be used in empirical estimations. The aim of this paper is close related with them. 
We show how parametric output distance functions allow the generation of random data on 
production process characterized by multi-output multi-input dimensions. Moreover we derive 
the necessary conditions under which second order translog technologies fulfil regularity 
conditions. We think that this set of rules provides a valid tool to improve the conclusions of 
methodological studies performing Monte-Carlo experiments in the field of frontier analysis.  

Furthermore, we show how a valid range of output ratios and parameters can be derived that 
satisfies the regularity conditions. These values will be useful for practitioners as a rule of 
thumb in empirical studies dealing with the estimation of parametric output distance functions 
technologies. More research is still necessary in order to measure the potential bias introduced 
in Monte-Carlo experimentation based exclusively on single output data.  
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