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1 Introduction

In [14], we introduced the notion of an elliptic pair (M,F ) on a complex manifold

X. Recall that this is the data of a (let us say, right) coherent DX -module M and

an IR-constructible sheaf F (more precisely, objects of derived categories), these data

satisfying:

char(M) ∩ SS(F ) ⊂ T ∗XX, (1.1)

where char(M) is the characteristic variety of M, SS(F ) is the micro-support of F ,

(defined in [7]), and T ∗XX is the zero-section of the cotangent bundle to X. More

generally, if f : X −→ Y is a morphism of complex manifolds, we defined the notion of

an f -elliptic pair, replacing in (1.1) char(M) by charf(M), the relative characteristic

variety.

In [14], we give four basic results on elliptic pairs: we prove a finiteness theorem

(coherence of the direct images of F ⊗M, assuming (M, F ) is an f -elliptic pair with
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proper support), a duality theorem (in the above situation, duality commutes with

direct images), a Künneth formula and we prove that microlocalization commutes with

direct images.

In this second paper on elliptic pairs, expanding results announced in [12, 13], we

will attach a cohomology class to (M, F ) and prove an index formula. More precisely,

let Λ0 = char(M), Λ1 = SS(F ), let dX = dimCI X and denote by ωX the dualizing

complex on X (hence ωX ' CIX[2dX ], since X is oriented). Assuming (M, F ) is elliptic,

we construct a cohomology class:

µeu(M, F ) ∈ H2dX
Λ0+Λ1

(T ∗X; CI T ∗X) (' H0
Λ0+Λ1

(T ∗X; π−1ωX))

that we call the ”microlocal Euler class” of (M, F ). This class is constructed using a

diagonal procedure, like in the proof of the Lefschetz formula for constructible sheaves

by Kashiwara [6] (see also [7, Chapter IX]), but working here in the framework of

D-modules. Set for short:

µeu(M) = µeu(M,CIX),

µeu(F ) = µeu(ΩX , F ).

Then the two main results of this paper may be stated as follows.

1) One has the formula:

µeu(M, F ) = µeu(M) ∗µ µeu(F ), (1.2)

where the operation ∗µ:

H0
Λ0

(T ∗X; π−1ωX)×H0
Λ1

(T ∗X; π−1ωX) −→ H0
Λ0+Λ1

(T ∗X; π−1ωX)

is defined by integration along the fibers of the map:

s : T ∗X ×X T ∗X −→ T ∗X, s(x; ξ1, ξ2) = (x; ξ1 + ξ2)

(this map is proper, thanks to the ellipticity hypothesis).

2) Assume (M, F ) is f -elliptic with proper support. One knows by [14] that f
!
(F ⊗

M) is DY -coherent, and we prove the formula:

µeu(f
!
(F ⊗M)) = fµ µeu(M, F ), (1.3)

where fµ is the morphism:

H0
Λ0+Λ1

(T ∗X; π−1ωX) −→ H0
fπtf ′−1(Λ0+Λ1)(T

∗Y ; π−1ωY )

deduced from the integration morphism Rf!ωX −→ ωY , (see [7, Chapter IX, §3]).
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These two theorems will be proved along the same lines as the corresponding results

for constructible sheaves (see [7]). We will use various commutative diagrams in derived

categories to express the compatibility of the functors involved, and as usual in these

matters we do not distinguish between commutative and anti-commutative diagrams.

Hence the results should be understood up to sign.

Using these two formulas, we find in particular that if (M, F ) is an elliptic pair with

compact support, then:

χ(RΓ(X;F ⊗M⊗LDX OX)) =
∫
T ∗X

µeu(M) ∪ µeu(F ) (1.4)

where χ(·) denotes the Euler-Poincaré index and ∪ the cup product.

If M is a real analytic compact manifold and X is a complexification of M , then

(M,CIM) is an elliptic pair if and only ifM is elliptic on M in the usual sense. Hence

formula (1.4) is similar to the Atiyah-Singer formula [1].

By formula (1.2), we see that to compute µeu(M, F ), it is enough to compute

separately µeu(M) and µeu(F ). It is easily shown that µeu(F ) is nothing but the

”characteristic cycle” of F constructed by Kashiwara (loc. cit.). This is a Lagrangian

cycle whose calculation is made at generic points and thus offers no difficulties (see [7,

Chapter IX, §3]). Hence the remaining problem is to understand µeu(M). At this step

our results are essentially conjectural. AssumeM is endowed with a good filtration and

denote by σΛ(M) the image of gr(M) in the Grothendieck group of coherent OT ∗X -

modules supported by Λ, the characteristic variety of M. In the last section we make

the two following conjectures (1.5) and (1.6) below:

[chΛ(σΛ(M)) ∪ π∗tdX(TX)]j = 0 for j > 2dX (1.5)

where chΛ(·) and tdX(TX) denote as usual the local Chern character with support in

Λ and the Todd class of X, respectively, and [·]j is the homogeneous part of degree j

in ⊕kHk
Λ(T ∗X; CI T ∗X),

µeu(M) = [chΛ(σΛ(M)) ∪ π∗tdX(TX)]2dX . (1.6)

As an evidence for these conjectures, we prove that both sides of (1.6) are compatible

to proper direct images, external products and non-characteristic inverse images, and

moreover they coincide in the two extreme cases where M is holonomic or is induced

by a coherent OX-module.

The Atiyah-Singer theorem, in its K-theoretical version, has recently been general-

ized to the relative case by Boutet de Monvel and Malgrange [3]. Our results provide a

relative index formula in the cohomological setting, and the proof of the above conjec-

tures would give a precise link with the Atiyah-Singer theorem. We hope to come back

to these conjectures in a next future.

2 Review on sheaves

In this section, we fix some notations and recall a few results of [7].

63



Let X be a real analytic manifold. One denotes by τ : TX −→ X and π : T ∗X −→
X the tangent and cotangent bundles to X, respectively. If Y is a submanifold of X, one

denotes by TYX and T ∗YX the normal and conormal bundles to Y in X, respectively.

In particular, T ∗XXdenotes the zero-section of T ∗X, that ones identifies to X. If Λ is a

subset of T ∗X, one denotes by Λa its image by the antipodal map.

One denotes by δ : X ↪→ X × X the diagonal embedding, and we identify X to

its image ∆ and T ∗X to T ∗∆(X × X) by the first projection defined on X × X and

T ∗(X ×X) ' T ∗X × T ∗X, respectively.

If X and Y are two manifolds, one denotes by q1 and q2 the first and second projec-

tion defined on X × Y .

One denotes by D(X) the derived category of the category of sheaves of CI -vector

spaces, and by Db(X) the full triangulated subcategory consisting of objects with

bounded cohomology. If Z is a subset of X, one denotes by CI Z the sheaf on X which

is constant with stalk CI on Z and zero on X \ Z.

One denotes by orX the orientation sheaf on X and by ωX the dualizing complex

on X. Hence:

ωX ' orX [dimX]

where dimX is the real dimension of X. More generally, if f is a morphism from X to

Y , one denotes by ωX/Y the relative dualizing complex. Hence:

ωX/Y ' ωX ⊗ f−1ω⊗−1
Y .

One denotes by f−1, Rf∗, Rf!, f
!,⊗, RHom the usual classical operations on sheaves

and we denote by × the external product. We shall use the two duality functors:

D′XF = RHom(F,CIX), (2.1)

DXF = RHom(F, ωX). (2.2)

If there is no risk of confusion, we write D′ or D instead of D′X or DX .

If F is an object of Db(X), one denotes by SS(F ) its micro-support, defined in [7], a

closed conic involutive subset of T ∗X. Moreover, we shall use the functor µM of Sato’s

microlocalization along M . Recall that for F in Db(X)

supp µM(F ) ⊂ T ∗MX ∩ SS(F ).

Now, recall that an object F of Db(X) is called weakly IR-constructible (w-IR-construc-

tible, for short) if there is a subanalytic stratification X =
⊔
αXα such that for all α, all

j, the sheaves Hj(F )|Xα are locally constant. If moreover, for each x ∈ X, each j ∈ ZZ,

the stalk Hj(F )x is finite dimensional, one says that F is IR-constructible. One denotes

by Db
w−IR−c(X) (resp. Db

IR−c(X)) the full triangulated subcategory of Db(X) consisting

of w-IR-constructible (resp. IR-constructible) objects. It follows from the involutivity

of the micro-support that F is w-IR-constructible if and only if SS(F ) is a closed conic

subanalytic Lagrangian subset of T ∗X.
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Let f : X −→ Y be a morphism of real analytic manifolds. To f one associates the

maps:

TX −→
f ′

X ×Y TY −→
fτ

TY, (2.3)

T ∗X ←−
tf ′

X ×Y T ∗Y −→
fπ

T ∗Y. (2.4)

One says that f is non-characteristic with respect to a closed conic subset Λ of T ∗Y if:

f−1
π (Λ) ∩ tf ′−1(T ∗XX) ⊂ X ×Y T ∗Y Y. (2.5)

Let F ∈ Db(X), G ∈ Db(Y ). Recall that:

(i) if f is non-characteristic with respect to SS(G), then:

SS(f−1G) ⊂ tf ′f−1
π SS(G), (2.6)

(ii)) if f is proper on supp(F ), then:

SS(Rf∗F ) ⊂ fπ
tf ′−1(SS(F )), (2.7)

(iii) one has:

SS(F × G) ⊂ SS(F )× SS(G). (2.8)

Finally, let us recall some microlocal constructions of [7, Chapter IX] that we shall use.

Let ΛX and ΛY be two closed conic subsets of T ∗X and T ∗Y , respectively, and

consider the diagram:

T ∗X

u

πX

X ×Y T ∗Y

u

π

w

fπu
tf ′

T ∗Y

u

πY

X X w

f
Y

Set for short:

fµ(ΛX) = fπ
tf ′−1(ΛX), (2.9)

fµ(ΛY ) = tf ′f−1
π (ΛY ). (2.10)

a) Assume f is proper on T ∗XX ∩ ΛX , (or equivalently, fπ is proper on ΛX). Using the

morphism:

Rfπ !π
−1ωX −→ π−1

Y Rf!ωX −→ π−1
Y ωY , (2.11)

we get the morphisms, for all j ∈ ZZ:

fµ : Hj
ΛX

(T ∗X; π−1ωX) −→ Hj
tf ′−1(ΛX)(X ×Y T

∗Y ; π−1ωX)

−→ Hj
fµ(ΛX )(T

∗Y ; π−1ωY ). (2.12)
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b) Assume f is non-characteristic for ΛY (i.e., tf ′ is proper on f−1
π (ΛY )). Using the

natural morphism (see [7]):

Rtf ′!π
−1f−1ωY −→ π−1

X ωX , (2.13)

we get for all j ∈ ZZ, the morphisms:

fµ : Hj
ΛY

(T ∗Y ; π−1ωY ) −→ Hj

f−1
π (ΛY )

(X ×Y T ∗Y ; π−1f−1ωY )

−→ Hj
fµ(ΛY )(T

∗X; π−1ωX). (2.14)

Note that the morphism (2.13) may also be obtained as follows. On a manifold Z, there

is a natural isomorphism: π−1
Z ωZ ' ωT ∗Z/Z . Hence we have the chain of morphisms:

Rtf ′!π
−1f−1ωY ' Rtf ′!f

−1
π ωT ∗Y/Y

' Rtf ′!ωX×Y T ∗Y/X

−→ ωT ∗X/X

' π−1
X ωX .

c) Using the natural isomorphism:

ωX × ωY ' ωX×Y ,

we get the morphism:

× : Hj
ΛX

(T ∗X; π−1ωX)×Hk
ΛY

(T ∗Y ; π−1ωY )

−→ Hj+k
ΛX×ΛY

(T ∗X × Y ; π−1ωX×Y ). (2.15)

d) Let Λ0 and Λ1 be two closed conic subsets of T ∗X satisfying:

Λa
0 ∩ Λ1 ⊂ T ∗XX. (2.16)

Setting:

∗µ = δµ ◦ ×
we get a morphism:

∗µ : Hj
Λ0

(T ∗X; π−1ωX)×Hk
Λ1

(T ∗X; π−1ωX) −→ Hj+k
Λ0+Λ1

(T ∗X; π−1ωX). (2.17)

Note that the morphism ∗µ (which is not the cup-product) may also be defined as the

composite of:

Hj
Λ0

(T ∗X; π−1ωX)×Hk
Λ1

(T ∗X; π−1ωX) (2.18)

−→
δ∗π

Hj+k
Λ0×XΛ1

(T ∗X ×X T ∗X; π−1ωX ⊗ ωX)

−→
tδ′∗

Hj+k
Λ0+Λ1

(T ∗X; π−1ωX)

where δ∗π is associated to the embedding T ∗X ×X T ∗X −→
δπ

T ∗X × T ∗X and tδ′∗ to the

map

T ∗X ×X T ∗X −→
tδ′

T ∗X, (x; ξ1, ξ2) 7→ (x; ξ1 + ξ2).
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3 Euler class of elliptic pairs

From now on, all manifolds and morphisms of manifolds are complex analytic. If X

is a complex manifold, we shall often identify X and XIR, the real analytic underlying

manifold. We shall also identify (T ∗X)IR with T ∗XIR, as in [7]. We denote by dX the

complex dimension of X. Hence,

dimXIR = 2dX .

Since X is oriented, we identify the orientation sheaf orX with the constant sheaf CIX ,

and the dualizing complex ωX with CIX [2dX ].

We denote by OX the sheaf of holomorphic functions on X, by ΩX the sheaf of holo-

morphic dX -forms and by DX the sheaf of rings of (finite order) holomorphic differential

operators on X. If Y is another complex manifold and if F is a sheaf of OX×Y -modules,

one sets:

F (0,dY ) = F ⊗q−1
2 OY

q−1
2 ΩY ,

and one defines similarly F (dX ,0) or F (dX ,dY ).

We shall follow the notations of [7] for D-modules. In particular, Mod(DX) denotes

the category of left DX -modules, D(DX) its derived category, and Db
coh(DX) the full

triangulated subcategory of D(DX) consisting of complexes with bounded and coherent

cohomology. Replacing DX by DopX , we have similar notations for right DX -modules. In

fact, if there is no risk of confusion, we shall often make no differences between right

and left D-modules and write DX instead of DopX .

In the sequel, we will often need to work with bimodule structures. Let k be a field.

Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an

abelian group M is equivalent to give M a structure of a left A ⊗k B-module. Using

this point of view it is easy to extend to bimodules the notions and notations defined

usually for modules. For example, we will denote by Mod(DX |S ⊗DX |S) the category

of left DX |S-bimodules and by D(DX |S ⊗DX |S) the corresponding derived category.

The characteristic variety of an objectM of Db
coh(DX) is denoted by char(M). This

is a closed conic involutive analytic subset of T ∗X [10], and we have the formula [7,

Theorem 11.3.3]:

char(M) = SS(M⊗LDX OX). (3.1)

As usual, one denotes by BZ|X the simple holonomic left DX -module associated to a

closed complex submanifold Z of X. We denote by f−1, f
!
, × the operations of inverse

image, proper direct image, and external product for D-modules, and we denote by DX

the dualizing functor. Recall that if M is a right DX -module, then

DX(M) = RHomDX (M,KX)

where

KX = ΩX [dX ]⊗OX DX

67



as a right DX ⊗DX -module. Notice the isomorphism of DX ⊗Dop
X -modules:

δ!DX ' B(0,dX)
∆|X×X, (3.2)

which induces the isomorphism of Dop
X ⊗D

op
X -modules:

δ!KX ' B(dX ,dX)
∆|X×X .

By this isomorphism, KX is naturally endowed with a structure of a right δ−1DX×X -

module and

δ!KX = δ!ΩX [dX ].

Let us recall the notion of an elliptic pair introduced in [14].

Definition 3.1 An elliptic pair (M, F ) on X is the data of M ∈ Db
coh(DopX ) and

F ∈ Db
IR−c(X) satisfying:

char(M) ∩ SS(F ) ⊂ T ∗XX.

The same definition holds for left DX -modules.

Proposition 3.2 Let (M, F ) be an elliptic pair on X. Then there are canonical mor-

phisms:

(i) δ!RHomDX (F ⊗M, F ⊗M) −→ (F ⊗M) × (D′F ⊗DM)⊗LDX×X OX×X ,

(ii) F ⊗M× D′F ⊗DM⊗LDX×X OX×X −→ δ!ωX .

Proof: (i) Let D∞X denote the ring of infinite order holomorphic differential operators.

Sato’s isomorphism:

D∞X ' δ!O(0,dX)
X×X [dX]

entails the morphism:

δ!DX −→ O(0,dX)
X×X [dX]. (3.3)

Set for short:

P = F ⊗M.

Applying the functor q−1
1 P ⊗Lq−1

1 DX
· to (3.3), then the functor RHom q−1

2 DX
(q−1

2 P , ·),
and using the isomorphism:

δ!RHomDX (P ,P) ' RHom q−1
2 DX

(q−1
2 P , δ!P),

we get the morphism:

δ!RHomDX (P ,P) −→ RHom q−1
2 DX

(q−1
2 P , q−1

1 P ⊗Lq−1
1 DX

O(0,dX)
X×X [dX]).
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Then:

RHom q−1
2 DX

(q−1
2 P , q−1

1 P ⊗Lq−1
1 DX

O(0,dX)
X×X [dX])

' RHom(q−1
2 F,RHom q−1

2 DX
(q−1

2 M, q−1
1 P ⊗Lq−1

1 DX
O(0,dX)
X×X [dX]))

' RHom(q−1
2 F,P × DXM⊗LDX×DX OX×X)

' RHom(q−1
2 F,P × DXM⊗LDX×X OX×X).

The micro-support of P × DXM⊗LDX×X OX×X is contained in T ∗X × char(M), hence

it intersects SS(q−1
2 F ) inside the zero-section of T ∗(X × X). Using [7, Prop. 5.4.14],

we get the isomorphisms:

RHom(q−1
2 F,P × DXM⊗LDX×X OX×X)

∼←− q−1
2 D′F ⊗

[
P × DXM⊗LDX×X OX×X

]
∼←− (F ⊗M) × (D′F ⊗DM)⊗LDX×X OX×X.

(ii) Set for short:

LX = (F ⊗M) × (D′F ⊗DM)⊗LDX×X OX×X (3.4)

Using the DX×X -linear morphism:

F ⊗M× D′F ⊗DM−→ δ!KX,

we get the sequence of morphisms:

LX −→ δ!KX ⊗LDX×X OX×X
' δ!ΩX [dX]⊗LDX×X OX×X
' δ!

[
ΩX [dX]⊗LDX DX→X×X ⊗

L
δ−1DX×X

δ−1OX×X
]

' δ!ΩX [dX]⊗LDX OX
' δ!ωX .

2

Using the morphisms defined in the preceding proposition, we can now construct

the microlocal Euler class of the elliptic pair (M, F ). Set:

Λ = char(M) + SS(F )

Then SS(LX) ⊂ Λ× Λa where LX is defined in (3.4), and

supp(µ∆LX) ⊂ Λ.
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By paraphrasing Kashiwara’s construction of the characteristic cycle of IR-constructible

sheaves, [6], we obtain the sequence of morphisms:

RHomDX (F ⊗M, F ⊗M) −→ δ!LX

' Rπ∗µ∆LX

' Rπ∗RΓΛµ∆LX

−→ Rπ∗RΓΛµ∆δ!ωX

' Rπ∗RΓΛπ
−1ωX .

Applying H0RΓ(X; ·), we find the morphism:

HomDX (F ⊗M, F ⊗M) −→ H0
Λ(T ∗X; π−1ωX). (3.5)

(Recall that

H0(T ∗X; π−1ωX) ' H2dX
Λ (T ∗X; CI T ∗X).)

Definition 3.3 Let (M, F ) be an elliptic pair. The image of idF⊗M by the morphism

(3.5) is the microlocal Euler class of (M, F )

µeu(M, F ) ∈ H0
char(M)+SS(F )(T

∗X; π−1ωX)

Its restriction to the zero-section of T ∗X is the Euler class of (M, F )

eu(M, F ) ∈ H0
supp(M)∩supp(F )(X;ωX)

IfM is a left DX -module, we define the microlocal Euler class of (M, F ) as being that

of (ΩX ⊗OXM, F ). We also introduce the following notations. ForM ∈ Db
coh(DX) and

F ∈ Db
IR−c(X), we set:

µeu(M) = µeu(M,CIX),

µeu(F ) = µeu(ΩX , F ).

4 The product formula

Let (M,F ) be an elliptic pair on the complex manifold X. Set:

Λ0 = char(M), Λ1 = SS(F ).

Then:

µeu(M) ∈ H0
Λ0

(T ∗X; π−1ωX),

µeu(F ) ∈ H0
Λ1

(T ∗X; π−1ωX),

µeu(M, F ) ∈ H0
Λ0+Λ1

(T ∗X; π−1ωX).

The operation ∗µ being that defined in §2, the aim of this section is to prove:
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Theorem 4.1 Let (M, F ) be an elliptic pair. Then:

µeu(M, F ) = µeu(M) ∗µ µeu(F )

The proof decomposes into several steps. In Proposition 4.2 below, and its proof, X

will denote a real analytic manifold. In this statement and its proof as well as in the

proof of Theorem 5.1, we shall not write the symbol “R” of derived functors, for short;

e.g. Hom(·, ·) means RHom(·, ·), π∗ means Rπ∗, etc.

We denote by Xi (i = 1, 2, 3, 4) a copy of X and we write

(X ×X)× (X ×X) = X1 ×X2 ×X3 ×X4.

For J ⊂ {1, 2, 3, 4} and any set Z, we introduce the notation

δij :
∏

`∈J\{j}
X` × Z −→

∏
`∈J

X` × Z

for the diagonal embedding sending (x`)`∈J\{j} to (x`)`∈J with xj = xi. Similarly, we

introduce the notation

δijk :
∏

`∈J\{j,k}
X` × Z −→

∏
`∈J

X` × Z

for the diagonal embedding sending (x`)`∈J\{j,k} to (x`)`∈J with xj = xk = xi. If there

is no risk of confusion, we simply write δ for any of these morphisms.

On a product, we denote by qi the projection to Xi.

We shall make a frequent use of the morphism of functors

δ−1
ij −→ δ!

ij ⊗ ωX . (4.1)

Now, we assume to be given:

F ∈ Db
IR−c(X), G ∈ Db(X), H ∈ Db(X ×X).

We set:

K = G × DF

Λ̃0 = SS(K), Λ̃1 = SS(H)

Λi = T ∗∆(X ×X) ∩ Λ̃i, i = 0, 1

We identify T ∗∆(X ×X) to T ∗X by the first projection. We shall assume:

Λ̃0 ∩ Λ̃a
1 ⊂ T ∗X×X(X ×X). (4.2)
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Proposition 4.2 The diagrams below commute.

Hom(F,G) ⊗ δ!H wHom(F,G⊗ δ!H)

u

(1)

δ!K ⊗ δ!H

∼

wHom(F, δ!(q−1
1 G⊗H))

(2) δ!(K ⊗H ⊗ ω⊗−1
X )

∼

π∗ΓΛ0µ∆K ⊗ π∗ΓΛ1µ∆H

∼

w π∗ΓΛ0+Λ1µ∆(K ⊗H ⊗ ω⊗−1
X )

∼

First, we state three lemmas whose proofs are easy verifications left to the reader.

Lemma 4.3 The diagram:

Hom(F,G)⊗ δ!H w
A

A

A

AC

Hom(F,G⊗ δ!H)

u

Hom(F, δ!(q−1
1 G⊗H))

is isomorphic to:

δ−1
13 δ

!
12δ

!
34(K × H) w

A

A

A

AC

δ!
12δ
−1
13 δ

!
34(K × H)

u

δ!
12δ

!
14δ
−1
13 (K × H)

Note that the morphisms

δ−1
13 δ

!
12 −→ δ!

12δ
−1
13

or

δ−1
13 δ

!
34 −→ δ!

14δ
−1
13

are defined as follows. Consider a cartesian square:

Z1 −→
λ1

Zxµ2 2
xλ2

Z12 −→
µ1

Z2

Then we have the natural morphism:

µ−1
2 ◦ λ!

1 −→ µ!
1 ◦ λ−1

2

defined by:

µ1!µ
−1
2 λ!

1 ' λ−1
2 λ1!λ

!
1 −→ λ−1

2 .
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Lemma 4.4 The diagram below commutes:

δ!
12δ
−1
13 δ

−1
24 (K × H)⊗ ω⊗−1

X w

α
A

A

A

ACγ

δ!
12δ

!
14δ
−1
13 (K × H)

u

β

δ!
1234(K × H)⊗ ωX

Moreover, assuming (4.2), α, β and γ are isomorphisms.

Note that α is defined through:

δ−1
24 ⊗ ω⊗−1

X −→ δ!
24

and

δ!
12δ

!
24 ' δ!

12δ
!
14,

and γ is defined through:

δ−1
13 δ

−1
24 ⊗ ω⊗−1

X −→ δ!
13δ

!
24 ⊗ ωX .

Lemma 4.5 The diagram below commutes:

δ−1
13 δ

!
12δ

!
34(K × H) w

A

A

A

AC

δ!
12δ

!
14δ
−1
13 (K × H)

u

δ!
1234(K × H)⊗ ωX

Proof of Proposition 4.2: Diagram (1) obviously commutes. To prove that (2) com-

mutes, we decompose it in the diagram below, after applying Lemma 4.3:

δ!K ⊗ δ!H w�
�
�
�
�
�
���

δ!
12δ

!
14δ
−1
13 (K × H)

N
N

N
N
N

N
NNQ

(6)

(3) δ!
1234(K × H)⊗ ωX (5) δ!

12(K ⊗H ⊗ ω⊗−1
X )

∼

(4)

π∗ΓΛ0µ∆K ⊗ π∗ΓΛ1µ∆H

∼

'
'
'
'
'
'
')

w π∗ΓΛ0+Λ1µ∆(K ⊗H ⊗ ω⊗−1
X )

N
N
N
N
N
N
NQ

∼

In this diagram, the sub-diagram (6) commutes by Lemma 4.5, the sub-diagram (5)

commutes by Lemma 4.4, the sub-diagram (4) commutes by [7, Prop. 4.3.5] and the

sub-diagram (3) obviously commutes. Hence the full diagram commutes. 2
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Proof of Theorem 4.1: We shall apply Proposition 4.2 with G = F , H = M ×
DM⊗LDX×X OX×X (hence K = F × DF ). Note that we have trace morphisms:

K −→ δ!ωX ,

H −→ δ!ωX .

Consider the diagrams:

Hom(F, F )⊗HomDX (M,M) w

u

HomDX (F ⊗M, F ⊗M)

u

(7)

Hom(F, F )⊗ δ!H wHom(F, F ⊗ δ!H)

δ!K ⊗ δ!H

∼

(8) δ!(K ⊗H ⊗ ω⊗−1
X )

∼

π∗ΓΛ0µ∆K ⊗ π∗ΓΛ1µ∆H w

∼

u

π∗ΓΛ0+Λ1µ∆(K ⊗H ⊗ ω⊗−1
X )

∼

u

(9)

π∗ΓΛ0µ∆δ!ωX ⊗ π∗ΓΛ1µ∆δ!ωX w

u

∼

π∗ΓΛ0+Λ1µ∆(δ!ωX ⊗ δ!ωX ⊗ ω⊗−1
X )

u

∼(10)

π∗ΓΛ0π
−1ωX ⊗ π∗ΓΛ1π

−1ωX w π∗ΓΛ0+Λ1π
−1ωX

Diagrams (7) and (10) obviously commute, diagram (8) commutes by Proposition 4.2

and diagram (9) commutes since it is obtained by applying the morphism of functors:

π∗ΓΛ0µ∆(·)⊗ π∗ΓΛ1µ∆(·) −→ π∗ΓΛ0+Λ1µ∆(· ⊗ · ⊗ ω⊗−1
X )

obtained from [7, Prop. 4.3.5] to K −→ δ!ωX and H −→ δ!ωX . To conclude the proof, it

remains to notice that the sequence of morphisms in the second column of the preceding

diagrams (7) and (8) is the same as the morphism

δ!Hom(F ⊗M, F ⊗M) −→ K ⊗H ⊗ ω⊗−1
X = LX

obtained in 3.2. Then, applying H0RΓ(X; ·) to the preceding diagram, we find the

commutative diagram:

Hom(F, F )⊗ HomDX (M,M) w

u

HomDX (F ⊗M, F ⊗M)

u

H0
Λ0

(T ∗X; π−1ωX)⊗H0
Λ1

(T ∗X; π−1ωX) w H0
Λ0+Λ1

(T ∗X; π−1ωX)

2
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5 The direct image formula

Let f : X −→ Y be a morphism of complex manifolds, and let (M, F ) be an elliptic pair

on X. Under suitable conditions that we shall recall now, it is proved in [14] that the

direct image f
!
(F ⊗M) belongs to Db

coh(DY ). The aim of this section is to prove that

in this situation, the microlocal Euler class of this image is the image by the morphism

(2.12) of that of (M, F ).

Let us first recall the definition of charf(M), the relative characteristic variety of

M, (see [11, 14]). If f is smooth, one denotes by DX |Y the sub-ring of DX generated

by the vertical vector fields, one locally choosesM0, a coherent DX |Y -submodule ofM
which generates it, and one sets:

charf (M) = char(DX ⊗DX|Y M0).

One checks easily that this does not depend on the choice of M0. In the general case

(f not necessarily smooth), one decomposes f by its graph as:

f : X −→
i
X × Y −→

q
Y

and one sets:

charf (M) = ti′i−1
π charq(i!M).

Let M∈ Db
coh(DX) and let F ∈ Db

IR−c(X). One says that (M, F ) is f -elliptic if

charf (M) ∩ SS(F ) ⊂ T ∗XX.

Since charf(M) contains char(M), an f -elliptic pair is elliptic. Let Db
good(DX) denote

the full triangulated subcategory of Db
coh(DX) generated by the objects M such that

for all j ∈ ZZ and all compact subset K of X, Hj(M) may be endowed with a good

filtration in a neighborhood of K. If (M, F ) is f -elliptic and moreover M belongs to

Db
good(DX), one says that (M, F ) is a good f -elliptic pair. If moreover f is proper on

suppM∩ suppF , one says that (M, F ) has f -proper support. It is proved in [14] that

if (M, F ) is a good f -elliptic pair with f -proper support, then f
!
(F ⊗M) belongs to

Db
good(DY ). Let Λ0 = char(M), Λ1 = SS(F ). We have the canonical morphism:

fµ : H0
Λ0+Λ1

(T ∗X; π−1ωX) −→ H0
fµ(Λ0+Λ1)(T

∗Y ; π−1ωY ).

Theorem 5.1 Assume (M,F ) is an f -elliptic pair with f -proper support. Then:

µeu(f
!
(F ⊗M)) = fµ µeu(M, F ) = fµ(µeu(M) ∗µ µeu(F )).

Proof: The proof will decompose into several steps. For short, during this proof, we

will not write the symbol “R” or “L” of right or left derived functors. We introduce

the notations:

X̃ = X ×X, f̃ = f × f : X ×X −→ Y × Y.
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We denote by δX the diagonal embedding X ↪→ X × X, and if there is no risk of

confusion, we write δ instead of δX . We also set for short:

LX = (F ⊗M) × (D′F ⊗DM)⊗DX̃ OX̃
LY = f

!
(F ⊗M) × D(f

!
(F ⊗M))⊗DỸ OỸ

By the results of [14], we have the isomorphisms:

f̃!LX ' f̃!(F ⊗M× D′F ⊗DM⊗DX̃ DX̃→Ỹ )⊗DỸ OỸ
∼←− f

!
(F ⊗M) × f

!
(D′F ⊗DM)⊗DỸ OỸ

' LY .

Consider the diagram:

f!HomDX (F ⊗M, F ⊗M) w

u

HomDY (f
!
(F ⊗M), f

!
(F ⊗M))

u

(1)

f!δ
!LX w δ!f̃!LX w δ!LY

(2) (3)

π∗fπ !
tf ′−1ΓΛXµ∆X

LX

∼

w

u

π∗ΓΛY µ∆Y
f̃!LX

∼

w

u

π∗ΓΛY µ∆Y
LY

∼

u

(4)

π∗fπ!
tf ′−1ΓΛXµ∆X

δ!ωX

u

∼

w π∗ΓΛY µ∆Y
f̃!δ!ωX

u

∼
(5)

(6) π∗ΓΛY µ∆Y
δ!f!ωX

u

∼
w π∗ΓΛY µ∆Y

δ!ωY

u

∼(7)

π∗fπ !
tf ′−1ΓΛXπ

−1ωX w π∗ΓΛY π
−1f!ωX w π∗ΓΛY π

−1ωY

It is enough to prove it is commutative. In fact, applying H0RΓ(Y ; ·) to it we get the

commutative diagram:

HomDX (F ⊗M, F ⊗M)

u

w HomDY (f
!
(F ⊗M), f

!
(F ⊗M))

u

H0
ΛX

(T ∗X; π−1ωX) w H0
ΛY

(T ∗Y ; π−1ωY ).

Diagram (2) commutes since

f!δ
! −→ δ!f̃!

is the restriction to the zero section of:

fπ !
tf ′−1µ∆X

−→ µ∆Y
f̃!
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(see [7, Prop. 4.3.4]).

Diagram (3) commutes since it is obtained by applying the natural transformation

π∗ΓΛY µ∆Y
−→ δ! to the morphism f̃!LX −→ LY .

Diagram (4) commutes. In fact, it is obtained by applying the morphism of functors:

π∗fπ !
tf ′−1ΓΛXµ∆X

−→ π∗ΓΛY µ∆Y
f̃!

to LX −→ δ!ωX . Diagrams (6) and (7) obviously commute.

Using the base change formula for elliptic pairs of [14] we see that for P = Q =

F ⊗M the map

Hom q−1
2 DY

(q−1
2 f

!
P , q−1

1 f
!
Q⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

−→ Hom q−1
2 DY

(q−1
2 f

!
P , f2!(q

−1
1 Q⊗q−1

1 DX
O(0,dY )
X×Y [dY ]))

appearing in Lemma 5.2 and Lemma 5.3 below is an isomorphism. Moreover, the

Künneth formula for elliptic pairs [loc. cit.] shows that the canonical map

f
!
(F ⊗M)× f

!
(D′F ⊗DM)⊗DY×Y OY×Y −→ f̃!(F ⊗M×D′F ⊗DM⊗DX×X OX×X)

is also an isomorphism. Hence, the conjunction of Lemma 5.2 and Lemma 5.3 below,

gives the commutativity of diagram (1). In the same way, Lemma 5.4 below shows that

diagram (5) commutes. 2

Let f : X −→ Y be a morphism of complex manifolds. We will decompose f̃ = f×f
as

X ×X w

f1 X × Y w

f2 Y × Y

X

δX

X

δ

w

f
Y

δY

Lemma 5.2 Let P and Q belong to Db(Dop
X ). Then we have the canonical commuta-

tive diagram:

f̃!δX !HomDX (P ,Q) w

u

f̃!Hom q−1
2 DX

(q−1
2 P , q−1

1 Q⊗q−1
1 DX

O(0,dX)
X×X [dX ])

u

Hom q−1
2 DY

(q−1
2 f

!
P , f2!(q

−1
1 Q⊗q−1

1 DX
O(0,dY )
X×Y [dY ]))

δY !HomDY (f
!
P , f

!
Q) wHom q−1

2 DY
(q−1

2 f
!
P , q−1

1 f
!
Q⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

Proof: The kernel representation of differential operators induces the morphism of

bimodules:

δX !DX −→ O(0,dX)
X×X [dX ].

77



From the relative integration map

f1|X !
ΩX×X |X [dX] −→ ΩX×Y |X [dY ],

and the Poincaré-Verdier adjunction formula, we deduce the bimodule morphism:

O(0,dX)
X×X [dX]⊗q−1

2 DX
q−1

2 DX→Y −→ f !
1O

(0,dY )
X×Y .

Hence, we get the chain of bimodule morphisms:

δX !DX→Y −→ δX !DX ⊗q−1
2 DX

q−1
2 DX→Y

−→ O(0,dX)
X×X [dX]⊗q−1

2 DX
q−1

2 DX→Y
−→ f !

1O
(0,dY )
X×Y [dY ].

This chain of morphisms gives rise to the commutative diagram:

δX !Q⊗q−1
2 DX

q−1
2 DX→Y w

u

δX !(Q⊗DX DX→Y )

u

q−1
1 Q⊗q−1

1 DX
O(0,dX)
X×X [dX ]⊗q−1

2 DX
q−1

2 DX→Y w q−1
1 Q⊗q−1

1 DX
f !

1O
(0,dY )
X×Y [dY ].

By adjunction of the tensor product, this gives us the commutative diagram:

δX !Q w

u

δX !Hom f−1DY (DX→Y ,Q⊗DX DX→Y )

u

q−1
1 Q⊗q−1

1 DX
O(0,dX)
X×X [dX ] w Hom q−1

2 f−1DY (q−1
2 DX→Y , q−1

1 Q⊗q−1
1 DX

f !
1O

(0,dY )
X×Y [dY ]).

Applying the functor Hom q−1
2 DX

(q−1
2 P , ·) to this diagram, we get the commutative

diagram:

δX !HomDX (P ,Q) w

u

δX !Hom f−1DY (P ⊗DX DX→Y ,Q⊗DX DX→Y )

u

MX w Hom q−1
2 f−1DY (q−1

2 (P ⊗DX DX→Y ), q−1
1 Q⊗q−1

1 DX
f !

1O
(0,dY )
X×Y [dY ])

where we have set for short:

MX = Hom q−1
2 DX

(q−1
2 P , q−1

1 Q⊗q−1
1 DX

O(0,dX)
X×X [dX ]).

Applying f1! and using the Poincaré-Verdier adjunction formula, we get the commuta-
tive diagram:

f1!δX !HomDX (P ,Q) w

u

δ!Hom f−1DY (P ⊗DX DX→Y ,Q⊗DX DX→Y )

u

f1!MX w MXY
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where we have set for short:

MXY = Hom q−1
2 DY

(q−1
2 f

!
P , q−1

1 Q⊗q−1
1 DX

O(0,dY )
X×Y ).

Finally, apply f2! and note that the diagram below is commutative:

f2!δ!Hom f−1DY (P ⊗DX DX→Y ,Q⊗DX DX→Y ) w

u

δY !HomDY (f
!
P , f

!
Q)

u

MY

u

f2!MXY w Hom q−1
2 DY

(q−1
2 f

!
P , f2!(q

−1
1 Q⊗q−1

1 DX
O(0,dY )
X×Y [dY ])).

Where we have set for short:

MY = Hom q−1
2 DY

(q−1
2 f

!
P , q−1

1 f
!
Q⊗q−1

1 DY
O(0,dY )
Y×Y [dY ]).

2

Lemma 5.3 Let P and Q belong to Db(Dop
X ). Then, we have the canonical commuta-

tive diagram:

f̃!Hom q−1
2 DX

(q−1
2 P , q−1

1 Q⊗q−1
1 DX

O(0,dX)
X×X [dX ])

u

f̃!(Q × DP ⊗DX×X OX×X)u

Hom q−1
2 DY

(q−1
2 f

!
P , f2!(q

−1
1 Q⊗q−1

1 DX
O(0,dY )
X×Y [dY ])) f

!
Q × f

!
DP ⊗DY ×Y OY×Y

u

Hom q−1
2 DY

(q−1
2 f

!
P , q−1

1 f
!
Q⊗q−1

1 DY
O(0,dY )
Y×Y [dY ]) f

!
Q × Df

!
P ⊗DY ×Y OY×Yu

Proof: Notice that the diagram below is commutative:

f̃![(Q× DP)⊗D×2
X
D×2
X→Y ] w f̃![Hom q−1

2 DX
(q−1

2 P ,Q× KX)⊗D×2
X
D×2
X→Y ]

u

f
!
Q × f

!
DP

u

Hom q−1
2 DY

(q−1
2 f

!
P , f̃

!
[(Q × KX)⊗D×2

X
D×2
X→Y ⊗q−1

2 DX
q−1

2 DX→Y ])

f
!
Q × HomDY (f

!
P , f

!
KX) w

u

Hom q−1
2 DY

(q−1
2 f

!
P , f

!
Q × f

!
KX)

u

f
!
Q × Df

!
P w Hom q−1

2 DY
(q−1

2 f
!
P , f

!
Q × KY )
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Thanks to the isomorphism

q−1
2 KX ⊗q−1

2 DX
OX×X −→ O(0,dX)

X×X [dX ],

and the canonical morphism

D×2
X→Y ⊗D×2

Y
OY×Y −→ OX×X,

an application of the functor ·⊗D×2
Y
OY×Y to the preceding diagram allows us to conclude.

2

Lemma 5.4 Let P belong to Db(Dop
X ). Then, we have the canonical commutative

diagram:

f̃!((P ×DP)⊗DX×X OX×X) w f̃!δX !ωX

u

(f
!
P × f

!
DP)⊗DY ×Y OY ×Y

u

δY !f!ωX

u

(f
!
P × Df

!
P)⊗DY ×Y OY ×Y w δY !ωY

Proof: Recall that the dualizing complex for D-modules

KX = ΩX [dX ]⊗OX DX

has a canonical structure of right D⊗2
X -module and that

δ!KX ' δ!Ω[dX ]

as D×2
X -modules. Also recall that:

f
!
KX = f!(KX ⊗D⊗2

X
D⊗2
X→Y )

and that the trace of the duality morphism associated to f is given by the D⊗2
Y -linear

integration morphism

f
!
KX −→ KY .

From the construction of this morphism (see [14]) it is clear that we have the canonical

commutative D×2
Y -linear diagram:

δ!f
!
KX

u

w f̃
!
δ!KX

u

δ!KY δ!KY .
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In this diagram, the first horizontal arrow is deduced from the morphism

D×2
X→Y −→ DX2→Y 2,

the first vertical arrow is deduced from the duality trace map and the second vertical

arrow is deduced from the isomorphism

f̃
!
δ!ΩX [dX] ∼−→ δ!f !

ΩX [dX ]

and the integration map

f
!
ΩX [dX] −→ ΩY [dY ].

Let us consider the commutative diagram:

f̃!(P × DP ⊗D×2
X
D×2
X→Y ) w δ!f

!
KX w f̃

!
δ!KX

u

f
!
P × f

!
DP

u

f
!
P × HomDY (f

!
P , f

!
KX) w

u

δ!f
!
KX

u

f
!
P × HomDY (f

!
P ,KY ) w δ!KY δ!KY

By scalar extension, it gives rise to the commutative diagram:

f̃
!
(P × DP) w f̃

!
δ!KX

u

f
!
P × f

!
DP

α

u

f
!
P × Df

!
P w δ!KY

(5.1)

Note that α is an isomorphism by the Künneth formula (see [14]).

Recall that for any holomorphic map f : X −→ Y and any right DX -module M,

we have

f
!
M⊗DY OY ∼−→ f!(M⊗DX OX).

Also recall that the compatibility between the duality morphism for D-modules and the

Poincaré-Verdier duality morphism may be expressed by the commutative diagram

(f
!
ΩX [dX])⊗DY OY

u

∼

w ΩY [dY ]⊗DY OY

u

∼f!(ΩX [dX ]⊗DX OX)

u

∼

f!ωX w ωY .
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With these facts in mind, the conclusion follows easily by applying the functor

· ⊗DỸ OỸ to the diagram (5.1). 2

As a particular case of Theorem 5.1, we get:

Corollary 5.5 Let M ∈ Db
good(DX) and assume f is proper on suppM. Then:

µeu(f
!
M) = fµ(µeu(M)).

Now apply these results to the map f : X −→ {pt}. We get:

Corollary 5.6 Let (M, F ) be a good elliptic pair with compact support, i.e.:

(i) M ∈ Db
good(DX) and F ∈ Db

IR−c(X),

(ii) char(M) ∩ SS(F ) ⊂ T ∗XX,

(iii) suppM∩ suppF is compact.

Then the complex RΓ(X;F ⊗M⊗LDX OX) has finite dimensional cohomology and its

Euler-Poincaré index is given by the formulas:

χ(RΓ(X;F ⊗M⊗LDX OX)) =
∫
X

eu(M, F )

=
∫
X

(µeu(M) ∗µ µeu(F ))|X

=
∫
T ∗X

µeu(M) ∪ µeu(F ).

Proof: The first formula follows from Theorem 5.1, the second one follows from The-

orem 4.1, and the last one from the equality:∫
T ∗X/X

(λa0 ∪ λ1) = (λ0 ∗µ λ1)|X,

which holds for any λj ∈ H0
Λj

(T ∗X; π−1ωX), j = 0, 1 and whose proof is left to the

reader. 2

6 Inverse image and external product formulas

Let f : X −→ Y be a morphism of complex manifolds and let (N , G) be an elliptic pair

on Y . We shall first study its inverse image by f .

Definition 6.1 We shall say that f is non-characteristic for the elliptic pair (N , G) if

f is non characteristic with respect to the set char(N ) + SS(G) (see (2.5)).

Proposition 6.2 Assume f is non-characteristic for the elliptic pair (N , G). Then

(f−1N , f−1G) is an elliptic pair in a neighborhood of f−1(suppN ∩ suppG).
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Proof: The hypothesis implies that f is non-characteristic with respect to N and with

respect to G in a neighborhood of suppN ∩ suppG. In particular, f−1N will be DX -

coherent on a neighborhood of f−1(suppN ∩ suppG).

Let (x; ξ) ∈ char(f−1N )∩SS(f−1G), and let y = f(x). Since f is non-characteristic

for N and for G, one knows [5, 7] that there exist (y; η0) ∈ char(N ) and (y; η1) ∈ SS(G)

such that tf ′(x).ηj = ξ for j = 0, 1. Hence tf ′(x).(η0 − η1) = 0 which implies by the

hypothesis that η0 − η1 = 0, hence η0 = η1 = 0 since (N , G) is elliptic. 2

In view of the above proposition and Theorem 4.1, in order to calculate the microlo-

cal Euler class of (f−1N , f−1G), it is enough to calculate separately µeu(f−1N ) and

µeu(f−1G). As we shall see below, the microlocal Euler class of an IR-constructible

sheaf is nothing but its characteristic cycle, and the functorial properties of this cycle

have been studied in [7], where it is proved in particular that it commutes to inverse

image (and external product). Hence it is enough to calculate the microlocal Euler

class of the inverse image (and external product) of coherent D-modules. Notice that

such a situation did not appear when studying direct image, where the result obtained

when treating simultaneously both M and F was much stronger than if we would have

assumed f proper on suppM and on suppF .

Let f : X −→ Y be a morphism of complex manifolds. We shall use the notations

(2.12), (2.13), (2.15) of §2.

Theorem 6.3 Let N ∈ Db
coh(Dop

Y ) and assume f is non-characteristic with respect to

N . Then:

µeu(f−1N ) = fµ(µeu(N )).

Proof: The proof is similar to that of Theorem 5.1, and we shall not give here all

details.

Set f̃ = (f, f) : X ×X −→ Y × Y, and decompose f̃ as:

X ×X w

f1 Y ×X w

f2 Y × Y

∆X

δX

w

∼ ∆

δ

w

f
∆Y

δY

Set:

LY = N × DN ⊗LDY×Y OY×Y ,
LX = f−1N × Df−1N ⊗LDX×X OX×X,
ΛY = charN ,Λ = f−1

π ΛY ,ΛX = fµΛY .

Since f is non-characteristic for N , the natural morphism:

f−1
2 RHom q−1

2 DY
(q−1

2 N ,O
(0,dY )
Y×Y ) −→ RHom q−1

2 DX
(q−1

2 f−1N ,O(0,dX)
Y×X )

is an isomorphism.
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On the other-hand, the natural f−1
1 DY -linear morphism:

Rf1!(q
−1
1 DY←X ⊗Lq−1

1 DX
OX×X[dX ]) −→ OY×X [dY ]

defines the morphism:

Rf1!(f
−1
1 q−1

1 N ⊗Lf−1
1 q−1

1 DY
q−1

1 DY←X ⊗Lq−1
1 DX

OX×X[dX ]) −→ q−1
1 N ⊗Lq−1

1 DY
OY×X [dY ],

hence the morphism:

q−1
1 f−1N ⊗L

q−1
1 DX

OX×X [dX] −→ f !
1(q
−1
1 N ⊗Lq−1

1 DY
OY×X)[dY ]

and this morphism is an isomorphism when f is non-characteristic for N . Combining

these two isomorphisms, we get the isomorphism:

f !
1f
−1
2 LY ∼−→ LX

Then, as for Theorem 5.1, the proof is decomposed by proving the commutativity of

the diagrams below. Until the end of the proof, we shall not write the symbols “R” or

“L” of derived functors, for short.

f−1HomDY (N ,N ) w

u

HomDX (f−1N , f−1N )

u

f−1δ!
Y LY w δ!f−1

2 LY w

∼ δ!
Xf

!
1f
−1
2 LY w δ!

XLX

π∗
tf ′!f

−1
π ΓΛY µ∆Y LY w

∼

u

π∗
tf ′!ΓΛµ∆f

−1
2 LY

u

∼

w

∼

∼

π∗ΓΛXµ∆Xf
!
1f
−1
2 LY w

∼

u

π∗ΓΛXµ∆XLX

∼

u

π∗
tf ′!f

−1
π ΓΛY µ∆Y δY !ωY w π∗ΓΛµ∆δ!f

−1ωY w π∗ΓΛXµ∆X δX !f
−1ωY ⊗ ωX/Y w π∗ΓΛXµ∆X δX !ωX

2

The commutativity of the first diagram will follows from Lemma 6.4 and 6.5 below,

and that of the last one from Lemma 6.6 below. Since their proofs follow the same lines

as for the direct image, we shall omit them. The other diagrams obviously commute.

Note that in lemmas 6.4, 6.5, 6.6 below, the reversed arrows will become isomor-

phisms when assuming thatM and N belong to Db
coh(DopY ) and f is non-characteristic.
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Lemma 6.4 Let M and N belong to Db(DopY ). Then the diagram below commutes.

f−1HomDY (N ,M) w

u

f−1δ!
YHom q−1

2 DY
(q−1

2 N , q−1
1 M⊗q−1

1 DY
O(0,dY )
Y ×Y [dY ])

u

δ!f−1
2 Hom q−1

2 DY
(q−1

2 N , q−1
1 M⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

u

∼

δ!
Xf

!
1f
−1
2 Hom q−1

2 DY
(q−1

2 N , q−1
1 M⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

u

δ!
Xf

!
1Hom q−1

2 DX
(q−1

2 f−1N , q−1
1 M⊗q−1

1 DY
O(0,dX)
Y×X [dY ])

HomDY (f−1N , f−1M) w δ!
XHom q−1

2 DX
(q−1

2 f−1N , q−1
1 f−1M⊗q−1

1 DX
O(0,dX)
X×X [dX ])

Lemma 6.5 Let M and N belong to Db(DopY ). Then the diagram below commutes.

f−1δ!
YHom q−1

2 DY
(q−1

2 N , q−1
1 M⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

u

f−1δ!
YM× DN ⊗DY×Y OY×Y

u

u

δ!f−1
2 Homq−1

2 DY
(q−1

2 N , q−1
1 M⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

u

∼

δ!f−1
2 M× DN ⊗DY×Y OY×Y

u

∼

u

δ!
Xf

!
1f
−1
2 Homq−1

2 DY
(q−1

2 N , q−1
1 M⊗q−1

1 DY
O(0,dY )
Y×Y [dY ])

u

δ!
Xf

!
1f
−1
2 M×DN ⊗DY×Y OY×Y

u

u

δ!
Xf

!
1Homq−1

2 DX
(q−1

2 f−1N , q−1
1 M⊗q−1

1 DY
O(0,dX )
Y×X [dY ]) δ!

Xf
!
1M× Df−1N ⊗DY×X OY×X [dY/X]u

δ!
XHomq−1

2 DX
(q−1

2 f−1N , q−1
1 f−1M⊗q−1

1 DX
O(0,dX )
X×X [dX ]) f−1M× Df−1N ⊗DX×X OX×Xu

Lemma 6.6 Let N belong to Db(DopY ). Then we have the commutative diagram:

f !
1f
−1
2 N × DN ⊗DY×Y OY×Y w f−1N × Df−1N ⊗DX×X OX×X

u

f−1
1 f−1

2 N × DN ⊗DY×Y OY×Y ⊗ ωX/Y

u

δX !f
−1ωY ⊗ ωX/Y w δX !ωX
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Now let M ∈ Db
coh(DX) and N ∈ Db

coh(DY ).

Theorem 6.7 One has:

µeu(M×N ) = µeu(M) × µeu(N ).

Proof: We set:

LX = M× DM⊗LDX×X OX×X ,
LY = N × DN ⊗LDY×Y OY×Y ,

LX×Y = (M×N ) × (DM× DN )⊗LDX×Y×X×Y OX×Y×X×Y ,

ΛX = char(M),ΛY = char(N ),Λ = ΛX × ΛY .

Then the diagram below obviously commutes, which completes the proof.

HomDX (M,M) × HomDX (N ,N ) w

u

HomDX×Y (M×N ,M×N )

u

δ!
XLX × δ!

YLY w δ!(LX × LY ) w δ!LX×Y

π∗ΓΛXµ∆X
LX × π∗ΓΛY µ∆Y

LY

∼

w

u

π∗ΓΛµ∆(LX × LY )

∼

w

u

π∗ΓΛµ∆LX×Y

∼

u

π∗ΓΛXµ∆X
δ!ωX × π∗ΓΛY µ∆Y

δ!ωY w

u

∼
π∗ΓΛµ∆δ!(ωX × ωY ) w

u

∼
π∗ΓΛµ∆δ!ωX×Y

u

∼

π∗ΓΛXπ
−1ωX × π∗ΓΛY π

−1ωY w π∗ΓΛπ
−1(ωX × ωY ) w

∼ π∗ΓΛπ
−1ωX×Y

2

7 Examples

7.1 Euler class of IR-constructible sheaves

Let F be an object of Db
IR−c(X), X being still a complex manifold. We shall prove that

µeu(F ) is nothing but CC(F ), the characteristic cycle of F constructed by Kashiwara

in [6], (see also [7, Chapter IX]). Recall that CC(F ) is obtained as the image of idF ∈
Hom(F, F ) in H0

Λ(T ∗X; π−1ωX), (where Λ = SS(F )), by the sequence of morphisms:

RHom(F, F ) ∼←− δ!(F × DF )

∼←− Rπ∗RΓΛµ∆(F × DF )

−→ Rπ∗RΓΛµ∆δ!ωX

' Rπ∗RΓΛπ
−1ωX .
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Proposition 7.1 Let F ∈ Db
IR−c(X). Then:

µeu(F ) = CC(F )

Proof: We start with the commutative diagram:

δ!CIX ∼−→ δ!RHomDX (ΩX ,ΩX)y y
CIX × ωX ∼−→ ΩX × DΩX ⊗LDX×X OX×X

Tensoring by q−1
1 F , then applying RHom(q−1

2 F, ·), we get the commutative diagram:

δ!RHom(F, F ) ∼−→ δ!RHomDX (F ⊗ΩX , F ⊗ΩX)y y
F × DF ∼−→ F ⊗ ΩX × D′F ⊗DΩX ⊗LDX×X OX×X

Set

H = F ⊗ ΩX × D′F ⊗DΩX ⊗LDX×X OX×X
We have a commutative diagram:

F × DF −→ Hy y
δ!ωX = δ!ωX .

Hence we have a commutative diagram, in which Λ = SS(F ):

RHom(F, F ) ∼−→ RHomDX (F ⊗ ΩX , F ⊗ ΩX)y y
δ!F × DF ∼−→ δ!Hx∼ x∼

Rπ∗RΓΛµ∆(F × DF ) ∼−→ Rπ∗RΓΛµ∆Hy y
Rπ∗RΓΛµ∆δ!ωX = Rπ∗RΓΛδ!ωXy y
Rπ∗RΓΛπ

−1ωX = Rπ∗RΓΛπ
−1ωX .

The result follows by applying the functor H0RΓ(X; ·). 2

7.2 Euler class of D-modules and E-modules

Let us first recall the construction of the microlocal Euler class of a coherentDX -module,

which of course, is a little easier than that of an elliptic pair.

LetM ∈ Db
coh(DX), and let Λ = char(M). The isomorphism of (DX ,DX)-bimodules

DX ' B(0,dX)
∆|X×X
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gives rise to the chain of morphisms:

RHomDX (M,M) ' RHom q−1
2 DX

(q−1
2 M, q−1

1 M⊗q−1
1 DX

B(0,dX)
∆|X×X)

' (M× DM)⊗LDX×X B∆|X×X [−dX]

−→ Rπ∗RΓΛµ∆(M× DM⊗LDX×X OX×X)

−→ Rπ∗RΓΛµ∆δ!ωX

' Rπ∗RΓΛπ
−1ωX .

This defines the morphism:

HomDX (M,M) −→ H0
Λ(T ∗X; π−1ωX)

and since this morphism is obviously the same as that constructed for elliptic pairs in

§3, µeu(M) is the image of idM.

Let EX denote the sheaf on T ∗X of finite order microdifferential operators of [10] (see

also [11] for a detailed exposition). We shall adapt our construction of the microlocal

Euler class to the case of coherent EX -modules.

One denotes by C∆|X×X the simple holonomic EX×X -module associated to the di-

agonal embedding ∆ ↪→ X × X, the ”microlocalization” of the DX -module B∆|X×X
encountered above. Isomorphism (3.2) entails the isomorphism of (EX , EX)-bimodules:

EX ' C(0,dX)
∆|X×X . (7.1)

Consider a coherent right EX -module N defined on an open subset U of T ∗X (or more

generally an object of the derived category Db
coh(Eop

X |U )). One can adapt to this situation

the construction of the microlocal Euler class of elliptic pairs. Set

DN = RHom EX(N , EX ⊗π−1OX π
−1ΩX [dX])

and let Λ = suppN . Morphism (7.1) gives rise to the chain of morphisms:

RHom EX(N ,N ) ' RHom q−1
2 EX

(q−1
2 N , q−1

1 N ⊗q−1
1 EX

C(0,dX)
∆|X×X)

' N × DN ⊗LEX×X C∆|X×X [−dX]

∼←− RΓΛ(N × DN ⊗LEX×X C∆|X×X [−dX])

−→ RΓΛ(C(2dX)
∆|X×X ⊗LEX×X C∆|X×X)

' RΓΛπ
−1ωX .

Applying the functor H0RΓ(U ; ·), we obtain the morphism:

HomEX (N ,N ) −→ H0
Λ(U ; π−1ωX). (7.2)

Definition 7.2 Let N ∈ Db
coh(Eop

X |U). The image of idN by the morphism (7.2) is

called the microlocal Euler class of N and is denoted µeu(N ).
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This definition is clearly compatible to that we have made for D-modules, which

implies that if U is open in T ∗X and if M belongs to Db
coh(DX), then:

µeu(EX ⊗π−1DX π
−1M|U) = µeu(M)|U . (7.3)

Remark 7.3 Let EIR
X denote the sheaf of microlocal operators constructed in [10]. Re-

call that it is defined as:

EIR
X = µ∆O(0,dX)

X×X [dX ]. (7.4)

If N ∈ Db
coh(Eop

X |U), we set

N IR = N ⊗EX E
IR
X .

Then replacing C∆|X×X by CIR
∆|X×X in the above construction, one sees it would be

possible to define directly the microlocal Euler class of N IR for N IR perfect. Using the

isomorphism

C(2dX)
∆|X×X ⊗LEX×X C∆|X×X ' C(2dX)

∆|X×X ⊗LEX×X C
IR
∆|X×X ,

one gets that µeu(N ) = µeu(N IR). In particular, µeu(N ) depends only on N IR.

7.3 Euler class of holonomic modules

Let N be a holonomic EX -module defined on an open subset U of T ∗X, and let Λ

denotes its support (i.e., its characteristic variety). Then Λ is a closed complex analytic

Lagrangian subset of U , conic for the action of CI× on T ∗X and there is a complex conic

smooth submanifold Λ0 ⊂ Λ which is open and dense in Λ. Let Λ0 =
⊔
α Λα, the Λα’s

being locally closed smooth and connected.

On each Λα, the EX -module N has a well-defined multiplicity mα, defined by Kashi-

wara in [5]. Moreover, each Λα is closed in

U ′ := U \ (Λ \
⊔
α

Λα)

and defines a Lagrangian cycle [Λα] in U ′. Since U \ U ′ has real codimension at least

two in U , the sum
∑
αmα[Λα] defines a Lagrangian cycle on U supported by Λ. Let us

denote it by CC(N ). Then:

CC(N ) ∈ H0
Λ(U ; π−1ωX).

Proposition 7.4 Let N be a holonomic EX -module. Then:

µeu(N ) = CC(N ).

Proof: Since both terms of the formula are Lagrangian cycles, it is enough to prove the

result at generic points of Λ. Hence we may assume Λ = T ∗ZX ∩U , where Z is a closed

complex submanifold of X. Since µeu(N ) depends only on N IR (see Remark 7.3), we
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may assume that N is a finite direct sum of sheaves CZ|X ⊗OX ΩX on U . Hence, it

remains to prove the formula:

µeu(BZ|X) = [T ∗ZX] (7.5)

This equality is a corollary of our preceding results. In fact, consider the embedding

i : Z ↪→ X and the projection a : Z −→ {pt}. Then BZ|X = i∗(OZ), and OZ =

a−1(CI {pt}). Since the Lagrangian cycle [T ∗ZX] is the direct image by the map i of the

inverse image by a of the Lagrangian cycle CI on the manifold {pt}, the result follows

from Theorems 5.1 and 6.3. 2

Corollary 7.5 Let M be a holonomic DX -module. Then

µeu(M) = µeu(M⊗LDX OX).

In other words, the microlocal Euler class of a holonomic DX -module is the same as

that of the complex of its holomorphic solutions. (Recall that this last complex is

constructible by [4].)

Proof: The result follows from Proposition 3.2 and the equality

CC(M) = CC(M⊗LDX OX)

proved in [5], but it can also be obtained directly, by considering the commutative

diagram below.

RHomDX (M,M) w

u

RHomDX (M⊗LDX OX ,M⊗
L
DX
OX)

u

δ!(M× DM⊗LDX×X OX×X)

u

δ!((M⊗LDX OX) × (DM⊗LDX OX))u ∼

u

ΩX [dX ]⊗LDX OX w

∼ ωX

2

7.4 Euler class of O-modules

Consider a coherent OX-module F . To it, one can associate the right coherent DX -

module F⊗OX DX . We shall show that the Euler class of this DX -module is the natural

image of a cohomology class which belongs to HdX
suppF(X; ΩX). For that purpose, let us

introduce the following notations.

Let F and G be two OX-modules. We set:

DOF = RHomOX(F ,ΩX [dX ]),

F × OG = OX×X ⊗OX×OX (F × G).
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Now assume F is OX-coherent and consider the chain of morphisms:

RHomOX (F ,F) −→ δ!(F × ODOF) −→ F ⊗LO DOF −→ ΩX [dX ].

This defines:

HomOX (F ,F) −→ HdX
suppF (X; ΩX). (7.6)

Definition 7.6 Let F be a coherent OX-module and let S denote its support. The

image of idF in HdX
S (X; ΩX) by the morphism (7.6) is called the holomorphic Euler

class of F and denoted by euO(F).

The natural morphism ΩX [dX ] −→ ωX defines the morphism:

α : HdX
S (X; ΩX) −→ H0

S(X;ωX). (7.7)

Proposition 7.7 Let F be a coherent OX-module. Then eu(F ⊗OX DX) is the image

of euO(F) by the morphism (7.7).

Proof: We start with the commutative diagram:

δ!OX w

u

δ!DX

u

OX × ODOOX w (DX × DDX)⊗LDX×DX OX×X .

Applying the functor q−1
1 F ⊗q−1

1 OX
·, then the functor RHom q−1

2 OX
(q−1

2 F , ·), we get the

commutative diagram:

δ!RHomOX (F ,F) w

u

δ!RHomDX (F ⊗OX DX ,F ⊗OX DX)

u

F × ODOF w (F ⊗OX DX ) × D(F ⊗OX DX)⊗LDX×DX OX×X.

Set

H = (F ⊗OX DX) × D(F ⊗OX DX)⊗LDX×X OX×X.

Then

H ' (F ⊗OX DX) × D(F ⊗OX DX)⊗LDX×DX OX×X.

On the other hand, we have the commutative diagram:

δ−1F × ODOF w

u

δ−1H

u

ΩX [dX] w ωX .
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Hence, we get the commutative diagram:

RHomOX (F ,F) w

u

RHomDX (F ⊗OX DX ,F ⊗OX DX)

u

δ!(F × ODOXF) w

u

δ!H

u

ΩX [dX] w ωX

which completes the proof. 2

Remark 7.8 The holomorphic Euler class of a coherent OX-module is known for long,

and O’Brian, Toledo and Tong [9] have proved that this class can be obtained as the

term of degree dX of the product of the Chern character of F by the Todd class of X.

See §7 below for further comments on this point.

Remark 7.9 One should not confuse the holomorphic Euler class euOX (·) and the

Euler class eu(·). For example, α(euOX (OX)) = eu(DX) and eu(OX) = eu(CIX). If one

chooses X = P 1(CI ), it follows from Theorem 5.1 that:∫
X

eu(OX) = 2, (7.8)∫
X

euOX (OX) = 1. (7.9)

This example also shows that the diagram below is not commutative.

CIX w

u

OX

u

ωX ΩX [dX ]u

Here, the first and second vertical arrows are defined by

δ!CIX −→ CIX × ωX ,

and

δ!OX −→ OX × ODOOX,
respectively, as in the proofs of Propositions 3.2 and 3.8.

Remark 7.10 Let F be a coherent OX -module and denote by S its support. Then

char(F ⊗OX DX) = π−1S, hence:

µeu(F ⊗OX DX) = π∗ eu(F ⊗OX DX),

where π∗ is the isomorphism:

H0
S(X;ωX) ∼−→ H0

π−1S(T ∗X; π−1ωX).
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8 A conjectural link with Chern classes

Let X be a complex manifold, Z a complex analytic subset and denote by Kan
Z (X) the

Grothendieck group of the full subcategory of Db
coh(OX) consisting of objects supported

by Z. In this section we shall assume to be constructed a local Chern character:

chZ : Kan
Z (X) −→ ⊕

j
H2j
Z (X; CIX)

such that if we define the local Euler character by the formula:

euZ(F) = chZ(F) ∪ tdX(TX)

(where ∪ is the cup product and tdX(·) is the Todd class), then the local Chern character

is compatible to external product and inverse image and the local Euler character is

compatible to external product and proper direct image, this last point being what

we shall refer as the Grothendieck-Riemann-Roch theorem. Such a construction does

exists in the algebraic case (see [2]). In the analytic case, one can construct chZ(·) after

shrinking X (see [3]). More precisely, let X ′ be an open relatively compact subset of

X. Then one defines the natural morphism:

ρ : Kan
Z (X) −→ Ktop

Z (X ′)

by realification. If F is a bounded complex of coherent OX-modules, we associate to it

the complex F IR := AXIR⊗OXF , where AXIR denotes the sheaf of real analytic functions

on the real analytic manifold XIR underlying X. Applying Cartan’s theorem ”A” (on

the closure of X ′) we see that F IR defines an element of Ktop
Z (X ′). Unfortunately, the

Grothendieck-Riemann-Roch theorem (with supports) has, to our knowledge, never

been written in this case. Hence the results of this section should be considered as

conjectural, or should be stated with suitable modifications (e.g. assuming we work in

the algebraic category).

Now consider a left coherent DX -module M endowed with a good filtration and

whose characteristic variety is contained in a closed conic analytic subset Λ of T ∗X.

Let gr(M) denote the associated graded module and set:

g̃r(M) = OT ∗X ⊗π−1gr(DX) π
−1gr(M).

Note that the element σΛ(M) of Kan
Λ (T ∗X) defined by g̃r(M) locally depends only on

M, not on the choice of the good filtration [5].

Let f : X −→ Y be a morphism of complex manifolds. We shall use the notations

introduced in §2, in particular in (2.9), (2.12), (2.13) and (2.15).

First consider a closed conic subset ΛY of T ∗Y , and assume f is non-characteristic

with respect to ΛY (i.e. tf ′ is proper on f−1
π (ΛY )). Then the morphisms:

f∗π : Kan
ΛY

(T ∗Y ) −→ Kan
f−1
π ΛX

(X ×Y T ∗Y ),
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and
tf ′∗ : Kan

f−1
π ΛY

(X ×Y T ∗Y ) −→ Kan
fµ(ΛY )(T

∗X)

are well-defined and if N is a left coherent DY -module whose characteristic variety is

contained in ΛY , it follows from Kashiwara [5] that:

tf ′∗f
∗
πσΛY (N ) = σfµ(ΛY )(f

−1N ). (8.1)

Similarly if f is proper on ΛX ∩ T ∗XX (i.e. fπ is proper on tf ′−1(ΛY )), then:

tf ′∗ : Kan
ΛX

(T ∗X) −→ Kan
tf ′−1(ΛX)(X ×Y T ∗Y )

and

fπ∗ : Kan
tf ′−1(ΛY )(X ×Y T ∗X) −→ Kan

fµ(ΛX)(T
∗Y )

are well-defined, and it is shown in Laumon [8] that if M is a right good DX -module

whose characteristic variety is contained in ΛX, then:

fπ∗
tf ′∗σΛX (M) = σfµ(ΛX)(f !

M). (8.2)

Finally one shows easily that:

σΛX (M) × σΛY (N ) = σΛX×ΛY (M×N ). (8.3)

Using the Riemann-Roch-Grothendieck Theorem at the level of cotangent bundles,

Laumon (loc.cit.) has deduced from (8.2) a formula which computes the Chern charac-

ters of σfµ(ΛX)(f !
M) from that of σΛX (M). In order to get a class which behaves well

both under direct and inverse images, we introduce the following:

Definition 8.1 LetM (resp. N ) be a right (resp. left) coherent DX -module endowed

with a good filtration and whose characteristic variety is contained in a closed conic

analytic subset Λ of T ∗X. We define the microlocal Chern character ofM and N along

Λ as:

µchΛ(M) = chΛ(σΛ(M)) ∪ π∗tdX(TX),

µchΛ(N ) = chΛ(σΛ(N )) ∪ π∗tdX(T ∗X).

We denote by µchjΛ(M) the component of µchΛ(M) in Hj
Λ(T ∗X; CI T ∗X), and similarly

for N .

This definition is motivated by the two following statements.

Proposition 8.2 The microlocal Chern character of the right DX -moduleM⊗OX ΩX

is the microlocal Chern character of the left DX -module M. In other words, ifM is a

left DX -module:

µchΛ(M⊗OX ΩX) = µchΛ(M).
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Proof: Recall that if E is a complex vector bundle of rank d, then denoting by c1(·)
the first Chern class:

tdX(E∗) = ec1(E∗) ∪ tdX(E),

ch(ΛdE) = ec1(E).

Choosing E = TX, we get:

tdX(T ∗X) = ch(ΩX) ∪ tdX(TX),

hence:

chΛ(σΛ(M⊗OX ΩX)) ∪ π∗tdX(TX) = chΛ(σΛ(M)) ∪ π∗ch(ΩX) ∪ π∗tdX(TX)

= chΛ(σΛ(M)) ∪ π∗tdX(T ∗X).

2

Theorem 8.3 LetM (resp. N ) be a coherentDX -module (resp. DY -module) endowed

with a good filtration, and let ΛX (resp. ΛY ) denote its characteristic variety.

(i) Assume f in non-characteristic for N . Then:

fµ(µchΛY (N )) = µchfµ(ΛY )(f
−1N ).

(ii) Assume f is proper on suppM. Then:

fµ(µchΛX (M)) = µchfµ(ΛX )(f ∗M).

(iii) One has:

µchΛX (M) × µchΛY (N ) = µchΛX×ΛY (M×N ).

Notice that in the above statements (i) and (ii), M or N can either be a right or a

left D-module (of course, in (iii) they need to be of the same type). This follows from

Proposition 8.2 since

f
!
(M⊗OX ΩX) = (f

!
M)⊗OY ΩY ,

and similarly for inverse images.

Proof: In the course of the proof we shall sometimes use the following notations: if W

is a manifold, we set for short

td(W ) = tdW (TW ).

Then recall that if p : E −→ W is a complex vector bundle on W , one has:

td(E) = tdE(TE) = p∗tdW (E) ∪ p∗td(W ),
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which follows from the exact sequence of vector bundles on W :

0 −→ p−1E −→ TE −→ p−1TW −→ 0.

Also recall the diagram associated to f :

T ∗X

u

πX

X ×Y T ∗Y

u

π

w

fπu
tf ′

T ∗Y

u

πY

X X w

f
Y

(i) We may assume N is a leftDY -module. Using (8.1) and the Riemann-Roch-Grothen-

dieck theorem applied to the map tf ′, we obtain:

chfµ(ΛY )σfµ(ΛY )(f
−1N ) ∪ td(T ∗X) = chfµ(ΛY )[

tf ′!f
∗
πσΛY (N )] ∪ td(T ∗X)

= tf ′![f
∗
πchΛY σΛY (N ) ∪ td(X ×Y T ∗Y )].

Hence:

chfµ(ΛY )σfµ(ΛY )(f
−1N ) ∪ π∗XtdX(T ∗X) ∪ π∗XtdX(TX)

= tf ′![f
∗
πchΛY σΛY (N ) ∪ π∗tdX(TX) ∪ π∗f∗tdY (T ∗Y )]

= tf ′!f
∗
π [chΛY σΛY (N ) ∪ π∗Y tdY (T ∗Y )] ∪ π∗XtdX(TX)

and the result follows since tdX(TX) has an inverse.

(ii) We may assume M is a right DX -module. Using (8.2) and the Riemann-Roch-

Grothendieck theorem, we get:

chfµ(ΛX)σfµ(f
!
(M) ∪ td(T ∗Y )) = chfµ(ΛX)[fπ!

tf ′∗σΛX (M)] ∪ td(T ∗Y )

= fπ![
tf ′∗chΛXσΛX (M) ∪ td(X ×Y T ∗Y )].

Hence:

chfµ(ΛX)σfµ(ΛX)(f !
M) ∪ π∗Y tdY (T ∗Y ) ∪ π∗Y tdY (TY )

= fπ![
tf ′∗chΛXσΛX (M) ∪ π∗tdX(TX) ∪ π∗f∗tdY (T ∗Y )]

= fπ!
tf ′∗[chΛXσΛX (M) ∪ π∗XtdX(TX)] ∪ π∗Y tdY (T ∗Y )

and the result follows since tdY (T ∗Y ) is invertible.

(iii) follows from (8.3) and the fact that ch(·) commutes to external product. 2

As a corollary we get that ifM and N are two DX -modules with characteristic variety

contained in Λ0 and Λ1 respectively, and if Λ0 ∩ Λ1 ⊂ T ∗XX, then:

µch(Λ0+Λ1)(M⊗LOX N ) = µchΛ0(M) ∗µ µchΛ1(N ).

In view of Theorem 8.3, the microlocal Chern character has the same functorial prop-

erties as the microlocal Euler class.
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Let us come back to the situation of Definition 8.1 and set:

cΛ = codimCI Λ.

It is clear that:

µchjΛ(M) = 0 for j < 2cΛ.

Proposition 8.4 The component of degree 2cΛ of the microlocal Chern character of

M, that is, µch2cΛ
Λ (M), is the characteristic cycle of M along Λ. In particular if M is

holonomic:

µch2dX
Λ (M) = µeu(M).

Proof: Since µchjΛ(M) is zero for j < 2cΛ,we have

µch2cΛ
Λ (M) = [chΛ(σΛ(g̃r(M)))]2cΛ,

and it is well-known that the term on the right-hand side is the analytic cycle on Λ of

the OT ∗X -coherent module g̃r(M), that is, the characteristic cycle of M. 2

Now we make the following conjectures:

Conjecture 8.5 (i) µchjΛ(M) = 0 for j /∈ [2cΛ, 2dX ],

(ii) µch2dX
Λ (M) = µeu(M).

By Proposition 8.4, Conjecture 8.5 (ii) is true for holonomic DX -modules. Moreover

it follows from Remark 7.10 and the work of O’Brian-Toledo-Tong [9] that Conjec-

ture 8.5 is true for induced DX -modules, i.e., for modules of the type F ⊗OX DX , F
being OX-coherent.

Example 8.6 Let M be a compact n-dimensional real analytic manifold, X a com-

plexification of M , M a right coherent DX -module, elliptic on M . By Corollary 5.6,

we have:

χ(RΓ(M ;M⊗LDX OX)) =
∫
T ∗X

µeu(M) ∪ µeu(CIM ).

Denote by σM the zero-section embeddingM ↪→ T ∗MX and by j the embedding T ∗MX ↪→
T ∗X. Since T ∗MX ∩ char(M) is contained in M , we get:∫

T ∗X
µeu(M) ∪ µeu(CIM ) =

∫
T ∗MX

j∗ µeu(M) =
∫
M
σ∗Mj

∗ µeu(M).

Now assume Conjecture 8.5 (ii) is true. We get, with Λ = char(M):

χ(RΓ(M ;M⊗LDX OX)) =
∫
M
σ∗M j

∗[ch(σΛ(M)) ∪ π∗tdX(TX)]

=
∫
M
σ∗M [j∗ch(σΛ(M))] ∪ tdM(TMCI ).

This is the classical Atiyah-Singer index formula.
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